Textbook of Heat Transfer - S. P. Sukhatme
Textbook of Heat Transfer - S. P. Sukhatme
Created by
Tushar Goel
B.Tech
Chemical Engineering
Indian Institute of Technology (BHU) , Varanasi
College Teacher
Dr. Prakash Kotecha
Cross-Checked by
Author: S. P. Sukhatme
Edition: 4
Year: 2005
ISBN: 9788173715440
1
Scilab numbering policy used in this document and the relation to the
above book.
For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means
a scilab code whose theory is explained in Section 2.3 of the book.
2
Contents
1 Introduction 5
3 Thermal Radiation 33
7 Heat Exchangers 86
3
List of Scilab Codes
4
Exa 3.5 Rate of incident radiation . . . . . . . . . . . . . . . . 38
Exa 3.6 Shape factor F12 . . . . . . . . . . . . . . . . . . . . . 38
Exa 3.7 Shape factor . . . . . . . . . . . . . . . . . . . . . . . 40
Exa 3.8 Shape factor F12 . . . . . . . . . . . . . . . . . . . . . 41
Exa 3.9 Shape factor . . . . . . . . . . . . . . . . . . . . . . . 42
Exa 3.10 Net radiative heat transfer . . . . . . . . . . . . . . . 42
Exa 3.11 steady state heat flux . . . . . . . . . . . . . . . . . . 43
Exa 3.12 Rate of heat loss . . . . . . . . . . . . . . . . . . . . . 45
Exa 3.13 Rate of nitrogen evaporation . . . . . . . . . . . . . . 45
Exa 3.14 Rate of energy loss from satellite . . . . . . . . . . . . 46
Exa 3.15 Net radiative heat transfer . . . . . . . . . . . . . . . 47
Exa 4.1 Pressure drop in smooth pipe . . . . . . . . . . . . . . 50
Exa 4.2.a Pressure drop and maximum velocity calculation . . . 51
Exa 4.2.b Pressure drop and maximum velocity calculation . . . 52
Exa 4.3 Pressure drop and power needed . . . . . . . . . . . . 54
Exa 4.4 Thickness of velocity boundary layer . . . . . . . . . . 55
Exa 4.5 Drag coefficient and drag force . . . . . . . . . . . . . 56
Exa 5.1.a Local heat transfer coefficient . . . . . . . . . . . . . . 58
Exa 5.1.b Wall temperature . . . . . . . . . . . . . . . . . . . . 59
Exa 5.2 ratio of thermal entrance length to entrance length . . 60
Exa 5.3.i Length of tube . . . . . . . . . . . . . . . . . . . . . . 61
Exa 5.3.ii Exit water temperature . . . . . . . . . . . . . . . . . 62
Exa 5.4 Length of tube over which temperature rise occurs . . 64
Exa 5.5 Rate of heat transfer to the plate . . . . . . . . . . . . 66
Exa 5.6.i Heat transfer rate . . . . . . . . . . . . . . . . . . . . 67
Exa 5.6.ii Average wall tempeature . . . . . . . . . . . . . . . . 68
Exa 5.7.i Pressure drop . . . . . . . . . . . . . . . . . . . . . . . 70
Exa 5.7.ii Exit temperature of air . . . . . . . . . . . . . . . . . 71
Exa 5.7.iii Heat transfer rate . . . . . . . . . . . . . . . . . . . . 73
Exa 6.1 Average nusselt number . . . . . . . . . . . . . . . . . 76
Exa 6.2 Reduce the equation . . . . . . . . . . . . . . . . . . . 78
Exa 6.3 Time for cooling of plate . . . . . . . . . . . . . . . . 79
Exa 6.4 True air temperature . . . . . . . . . . . . . . . . . . . 81
Exa 6.5 Rate of heat flow by natural convection . . . . . . . . 83
Exa 6.6 Average Heat transfer coeffficient . . . . . . . . . . . . 84
Exa 7.1 Heat transfer coeffficient . . . . . . . . . . . . . . . . . 86
Exa 7.2 Area of heat exchanger . . . . . . . . . . . . . . . . . 87
Exa 7.3 Mean temperature difference . . . . . . . . . . . . . . 88
5
Exa 7.4.a Area of heat exchanger . . . . . . . . . . . . . . . . . 89
Exa 7.4.b Exit temperature of hot and cold streams . . . . . . . 90
Exa 7.5 Exit Temperature . . . . . . . . . . . . . . . . . . . . 92
Exa 8.1 Average Heat Transfer Coefficient . . . . . . . . . . . 96
Exa 8.2 Average heat transfer coefficient and film Reynolds num-
ber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Exa 8.3 Length of the tube . . . . . . . . . . . . . . . . . . . . 99
Exa 8.4 boiling regions . . . . . . . . . . . . . . . . . . . . . . 101
Exa 8.5 Initial heat transfer rate . . . . . . . . . . . . . . . . . 105
Exa 9.1 Composition on molar basis . . . . . . . . . . . . . . . 107
Exa 9.2 Diffusion coefficient of napthalene . . . . . . . . . . . 108
Exa 9.3.a Rate of hydrogen diffusion . . . . . . . . . . . . . . . . 108
Exa 9.3.b Rate of hydrogen diffusion . . . . . . . . . . . . . . . . 109
Exa 9.4.a Rate of loss of ammonia . . . . . . . . . . . . . . . . . 110
Exa 9.4.b Rate at which air enters the tank . . . . . . . . . . . . 111
Exa 9.5 Rate of evaporation . . . . . . . . . . . . . . . . . . . 112
Exa 9.6 Rate of evaporation . . . . . . . . . . . . . . . . . . . 113
Exa 9.7.a Mass transfer coefficient Colburn anology . . . . . . . 114
Exa 9.7.b Mass transfer coefficient Gnielinski equation . . . . . . 115
Exa 9.7.c To show mass flux of water vapour is small . . . . . . 117
Exa 9.8 Mass fraction . . . . . . . . . . . . . . . . . . . . . . . 118
6
Chapter 1
Introduction
1 clear ;
2 clc ;
3 // A Textbook on HEAT TRANSFER by S P SUKHATME
4 // C h a p t e r 1
5 // I n t r o d u c t i o n
6
7
8 // Example 1 . 1
9 // Page 5
10 // Given t h a t t h e v i s c o s i t y o f w a t e r a t 100 d e g r e e
C e l s i u s i s 2 8 . 8 ∗ 10ˆ −6 k g f s /mˆ2 i n MKS s y s t e m ,
e x p r e s s t h i s value in SI system .
11 printf ( ” Example 1 . 1 , Page 5 \n \n ” )
12
13 // S o l u t i o n :
14
15 // a t 100 d e g r e e C e l s i u s
16 v1 =28.8 * 10^ -6; // [ k g f s /mˆ 2 ]
17 v2 =28.8 * 10^ -6 * 9.8; // [ N s /mˆ 2 ]
18 printf ( ” V i s c o s i t y o f w a t e r a t 100 d e g r e e
c e l s i u s in
t h e S I s y s t e m i s %e N . s /mˆ−2 ( o r kg /m s ) ” , v2 )
7
Scilab code Exa 1.2 Useful heat gain and thermal efficiency
1 clear ;
2 clc ;
3 // Textbook o f Heat T r a n s f e r ( 4 t h E d i t i o n ) ) , S P
Sukhatme
4 // C h a p t e r 1 − I n t r o d u c t i o n
5
6 // Example 1 . 2
7 // Page 14
8 printf ( ” Example 1 . 2 , Page 14 \n \n ” )
9 // S o l u t i o n :
10 i =950; // r a d i a t i o n f l u x [W/mˆ 2 ]
11 A =1.5; // a r e a [mˆ 2 ]
12 T_i =61; // i n l e t t e m p e r a t u r e
13 T_o =69; // o u t l e t t e m p e r a t u r e
14 mdot =1.5; // [ kg / min ] , mass f l o w r a t e
15 Mdot =1.5/60; // [ kg / s e c ]
16 Q_conductn =50; // [W]
17 t =0.95; // t r a n s m i s s i v i t y
18 a =0.97; // a b s o p t i v i t y
19 // from a p p e n d i x t a b l e A. 1 a t 65 d e g r e e C
20 C_p = 4183 ; // [ J / kg K ]
21 // U s i n g E q u a t i o n 1 . 4 . 1 5 , a s s u m i n g t h a t t h e f l o w
t h r o u g h t h e t u b e s i s s t e a d y and one d i m e n s i o n a l .
22 // i n t h i s c a s e (dW/ d t ) s h a f t = 0
23 // a s s u m i n g (dW/ d t ) s h e a r i s n e g l i g i b l e
24 // eqn ( 1 . 4 . 1 5 ) r e d u c e s t o
25 q = Mdot * C_p *( T_o - T_i ) ;
26
27 // l e t ’ n ’ be t h e r m a l efficiency
28 n = q /( i * A ) ;
29 n_percent = n *100;
30
8
31
32 // e q u a t i o n 1 . 4 . 1 3 y i e l d s dQ/ d t = 0
33 Q_re_radiated =( i * A * t * a ) - Q_conductn - q ; // [W]
34
35
36 printf ( ” U s e f u l h e a t g a i n r a t e i s %f W \n ” ,q ) ;
37 printf ( ” Thermal e f f i c i e n c y i s %e i . e . %f p e r c e n t \n
” ,n , n_percent ) ;
38 printf ( ” The r a t e a t which e n e r g y i s l o s t by r e −
r a d i a t i o n and c o n v e c t i o n i s %f W” , Q_re_radiated )
1 clear ;
2 clc ;
3 // A Textbook on HEAT TRANSFER by S P SUKHATME
4 // C h a p t e r 1
5 // I n t r o d u c t i o n
6
7
8 // Example 1 . 3
9 // Page 16
10 printf ( ” Example 1 . 3 , Page 16\ n\n ” ) ;
11
12 // S o l u t i o n :
13 // Given
14 v_i =10; // [m/ s ]
15 q =1000; // [W]
16 d_i =0.04; // [m]
17 d_o =0.06; // [m]
18
19 // From a p p e n d i x t a b l e A. 2
20 rho1 =0.946; // [ kg /mˆ 3 ] a t 100 d e g r e e C
21 C_p =1009; // [ J / kg K ]
22
9
23 mdot = rho1 *( %pi /4) *( d_i ^2) * v_i ; // [ kg / s ]
24
25
26 // I n t h i s c a s e (dW/ d t ) s h a f t =0 and ( z o − z i ) =0
27 // From eqn 1 . 4 . 1 5 , q=mdot ∗ ( h o −h i )
28 // L e t dh = ( h o −h i )
29 dh = q / mdot ; // [ J / kg ]
30 // L e t T o be t h e o u t l e t t e m p e r a t u r e
31 T_o = dh / C_p +100;
32
33 rho2 =0.773; // [ kg /mˆ 3 ] a t T o = 1 8 3 . 4 d e g r e e C
34 // From eqn 1 . 4 . 6
35 v_o = mdot /( rho2 *( %pi /4) *( d_o ) ^2) ; // [m/ s ]
36
37 dKE_kg =( v_o ^2 - v_i ^2) /2; // [ J / kg ]
38
39
40 printf ( ” E x i t T e m p e r a t u r e i s %f d e g r e e C \n ” , T_o ) ;
41 printf ( ” E x i t v e l o c i t y i s %f m/ s \n ” , v_o ) ;
42 printf ( ” Change i n K i n e t i c Energy p e r kg = %f J / kg ” ,
dKE_kg ) ;
10
Chapter 2
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 1
9 // Page 27
10 printf ( ” Example 2 . 1 , Page 27 \n\n ” )
11
12 d_i =0.02; // [m] i n n e r r a d i u s
13 d_o =0.04; // [m] o u t e r r a d i u s
14 r_i = d_i /2; // [m] i n n e r r a d i u s
15 r_o = d_o /2; // [m] o u t e r r a d i u s
16 k =0.58; // [ w/m K ] t h e r m a l c o n d u c t i v i t y o f t u b e
material
17 t_i =70; // [ d e g r e e C ]
18 t_o =100; // [ d e g r e e C ]
19 l =1; // [m] p e r u n i t l e n g t h
20 // u s i n g e q u a t i o n 2 . 1 . 5
11
21 q = l *2*( %pi ) * k *( t_i - t_o ) / log ( r_o / r_i ) ;
22 printf ( ” Heat f l o w p e r u n i t l e n g t h i s %f W/m” ,q ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 2
9 // Page 31
10 printf ( ” Example 2 . 2 , Page 31 \n\n ” )
11
12 d_i =0.02; // [m] i n n e r r a d i u s
13 d_o =0.04; // [m] o u t e r r a d i u s
14 r_i = d_i /2; // [m] i n n e r r a d i u s
15 r_o = d_o /2; // [m] o u t e r r a d i u s
16 k =0.58; // [ w/m K ] t h e r m a l c o n d u c t i v i t y o f t u b e
material
17 t_i =70; // [ d e g r e e C ]
18 t_o =100; // [ d e g r e e C ]
19 l =1; // [m] p e r u n i t l e n g t h
20
21 // t h e r m a l r e s i s t a n c e o f t u b e p e r u n i t l e n g t h
22 R_th_tube =( log ( r_o / r_i ) ) /(2* %pi * k * l ) ; // [ K/W]
23
24 // from t a b l e 1 . 3 , h e a t t r a n s f e r co− e f f i c i e n t f o r
c o n d e n s i n g steam may be t a k e n a s
25 h =5000; // [W/mˆ2 K ]
26 // t h e r m a l r e s i s t a n c e o f c o n d e n s i n g steam p e r u n i t
length
27 R_th_cond =1/( %pi * d_o * l * h ) ;
12
28
29 // s i n c e R t h t u b e i s much l e s s t h a n R t h c o n d , we
can assume o u t e r s u r f a c e t o be a t 100 d e g r e e C
30 // h e n c e h e a t f l o w r a t e p e r u n i t m e t e r i s
31 q = l *2*( %pi ) * k *( t_i -100) / log ( r_o / r_i ) ;
32
33 printf ( ” Thermal r e s i s t a n c e o f t u b e p e r u n i t l e n g t h
i s %f K/W\n ” , R_th_tube ) ;
34 printf ( ” Thermal r e s i s t a n c e o f c o n d e n s i n g steam p e r
u n i t l e n g t h i s %f K/W\n ” , R_th_cond ) ;
35 printf ( ” Heat f l o w p e r u n i t l e n g t h i s %f W/m” ,q ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 3
9 // Page 31
10 printf ( ” Example 2 . 3 , Page 31 \n\n ” )
11
12 h_w =140; // h e a t t r a n s f e r c o e f f i c i e n t on w a t e r s i d e ,
[W/mˆ2 K ]
13 h_o =150; // h e a t t r a n s f e r c o e f f i c i e n t on o i l s i d e , [
W/mˆ2 K ]
14 k =30; // t h e r m a l c o n d u c t i v i t y [W/m K ]
15 r_o =0.01; // i n n e r d i a m e t e r o f GI p i p e on i n s i d e
16 r_i =0.008; // o u t e r d i a m e t e r GI p i p e on i n s i d e
17 l =1; // [m] , p e r u n i t l e n g t h
18
19 // Thermal r e s i s t a n c e o f i n n e r GI p i p e
13
20 R_inner_GI = log (( r_o / r_i ) ) /(2* %pi * k * l ) ;
21
22
23 // Thermal r e s i s t a n c e on t h e o i l s i d e p e r u n i t
length
24 R_oilside =1/( h_o * %pi *2* r_i * l ) ;
25
26
27 // Thermal r e s i s t a n c e on c o l d w a t e r s i d e p e r u n i t
length
28 R_waterside =1/( h_w * %pi *2* r_o * l ) ;
29
30
31 // we s e e t h e r m a l r e s i s t a n c e o f i n n e r GI p i p e
c o n t r i b u t e s l e s s than 0 . 5 p e r c e n t to the t o t a l
resistance
32
33
34 printf ( ” Thermal r e s i s t a n c e o f i n n e r GI p i p e = %f K/W
\n ” , R_inner_GI ) ;
35 printf ( ” Thermal r e s i s t a n c e on t h e o i l s i d e p e r u n i t
l e n g t h = %f K/W \n ” , R_oilside ) ;
36 printf ( ” Thermal r e s i s t a n c e on c o l d w a t e r s i d e p e r
u n i t l e n g t h = %f K/W \n ” , R_waterside ) ;
37 printf ( ” So , E n g i n e e r i n −c h a r g e h a s made a bad
d e c i s i o n ”);
1 clear all ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
14
7
8 // Example 2 . 4
9 // Page 32
10 printf ( ” Example 2 . 4 , Page 32 \n\n ” )
11
12 Ti = 300; // I n t e r n a l temp o f h o t g a s i n
degree Celsius
13 OD = 0.1; // Outer d i a m e t e r o f l o n g m e t a l
pipe in meters
14 ID = 0.04; // I n t e r n a l d i a m t e r e o f l o n g m e t a l
pipe in meters
15 ki = 0.052; // t h e r m a l c o n d u c t i v i t y o f m i n e r a l
wood i n W/mK
16 To = 50; // Outer s u r f a c e t e m p e r a t u r e i n
degree c e l s i u s
17 hi = 29; // h e a t t r a n s f e r c o e f f i c i e n t i n
t h e i n n e r s i d e i n W/mˆ2 K
18 ho = 12; // h e a t t r a n s f e r c o e f f i c i e n t i n
t h e o u t e r p i p e W/mˆ2 K
19
20 // D e t e r m i n a t i o n o f t h i c k n e s s o f i n s u l a t i o n
21 function [ f ] = thickness ( r )
22 f = r *(10.344 + 271.15* log ( r *(0.05) ^ -1) ) -11.75
23 funcprot (0) ;
24 endfunction
25 r = 0.082;
26 while 1
27 rnew = r - thickness ( r ) / diff ( thickness ( r ) ) ;
28 if rnew == r then
29 r3 = rnew ;
30 break ;
31 end
32 r = rnew ;
33 end
34 t = r3 - OD /2;
35 printf ( ” \n T h i c k n e s s o f i n s u l a t i o n = %f cm” ,t *100) ;
36 // Heat l o s s p e r u n i t l e n g t h
37 q = 600*(22/7) * r3 ;
15
38 printf ( ” \n Heat l o s s p e r u n i t l e n g t h = %. 1 f W/m” ,q ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 5
9 // Page 34
10 printf ( ” Example 2 . 5 , Page 34 \n\n ” )
11
12 Ti = 90; //Temp on i n n e r
side in degree c e l s i u s
13 To = 30; //Temp on o u t e r
side in degree c e l s i u s
14 hi = 500; // h e a t t r a n s f e r
c o e f f c i e n t i n W/mˆ2 K
15 ho = 10; // h e a t t r a n s f e r
c o e f f c i e n t i n W/mˆ2 K
16 ID = 0.016; // I n t e r n a l
diameter in meters
17 t = [0 0.5 1 2 3 4 5]; // I n s u l a t i o n
t h i c k n e s s i n cm
18 OD = 0.02; // Outer d i a m e t e r
in meters
19 r3 = OD /2 + t /100; // r a d i u s a f t e r
i n s u l a t i o n in meters
20
21 i =1;
22 printf ( ” \n I n s u l a t i o n t h i c k n e s s ( cm ) r 3 (m)
h e a t l o s s r a t e p e r m e t e r (W/m) ” ) ;
16
23 while i <=7
24 ql ( i ) = [2*( %pi ) *( ID /2) *( Ti - To ) ]/[(1/ hi )
+(0.008/0.2) * log ( r3 ( i ) /0.01) + (0.008/ r3 ( i ) )
*(1/ ho ) ];
25 printf ( ” \n %. 1 f %. 3 f
%. 1 f ” ,t ( i ) , r3 ( i ) , ql ( i ) ) ;
26 i = i +1;
27 end
28 plot (t , ql ) ;
29 xtitle ( ” ” ,” I n s u l a t i o n t h i c k n e s s ( cm ) ” ,” Heat l o s s r a t e
p e r u n i t l e n g t h ,W/m” ) ;
30 printf ( ” \n The maxima i n t h e c u r v e i s a t r 3 = 0 . 0 2
m” ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 6
9 // Page 36
10 printf ( ” Example 2 . 6 , Page 34 \n\n ” )
11
12 h_natural = 10; // h e a t t r a n s f e r c o e f f i c i e n t f o r
n a t u r a l c o n v e c t i o n i n W/mˆ2 K
13 h_forced = 50; // h e a t t r a n s f e r c o e f f i c i e n t f o r
f o r c e d c o n v e c t i o n i n W/mˆ2 K
14 // f o r a s b e s t o s
15 k1 = 0.2; // t h e r m a l c o n d u c t i v i t y i n W/m K
16 // f o r m i n e r a l w o o l
17 k2 = 0.05; // t h e r m a l c o n d u c t i v i t y i n W/m K
17
18 printf ( ” \n c r i t i c a l r a d i u s o f i n s u l a t i o n i n cm” ) ;
19 printf ( ” \n h = 10
h = 50 ” ) ;
20 printf ( ” \n A s b e s t o s %. 1 f
%. 1 f ” , k1 *100/ h_natural , k1
*100/ h_forced ) ;
21 printf ( ” \n M i n e r a l w o o l %. 1 f
%. 1 f ” , k2 *100/ h_natural , k2
*100/ h_forced ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 7
9 // Page 43
10 printf ( ” Example 2 . 7 , Page 43 \n\n ” )
11
12 H = 5 ; // H e i g h t , [m]
13 L = 10 ; // Length , [m]
14 t = 1 ; // t h i c k n e s s , [m]
15 b = t /2;
16 k = 1.05 ; // [W/m K ]
17 q = 58 ; // [W/mˆ 3 ]
18 T = 35 ; // [ C ]
19 h = 11.6 ; // Heat t r a n s f e r c o e f f i c i e n t , [W/mˆ2 K ]
20 // S u b s t i t u t i n g t h e v a l u e s i n e q u a t i o n 2 . 5 . 6
21 T_max = T + q * b *( b /(2* k ) +1/ h ) ;
22 printf ( ”Maximum T e m p e r a t u r e = %f d e g r e e C” , T_max ) ;
18
Scilab code Exa 2.8 Steady state temperature
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 8
9 // Page 47
10 printf ( ” Example 2 . 8 , Page 47 \n\n ” )
11
12 // The b a r w i l l have two d i m e n s i o n a l v a r i a t i o n i n
temperature
13 // t h e d i f f e r e n t i a l e q u a t i o n i s s u b j e c t t o boundary
conditions
14 x1 = 0; // [ cm ]
15 Tx1 = 30; // [ C ]
16 x2 = 5; // [ cm ]
17 Tx2 = 30; // [ C ]
18 y1 = 0; // [ cm ]
19 Ty1 = 30; // [ C ]
20 y2 = 10; // [ cm ]
21 Ty2 = 130; // [ C ]
22 // s u b s t i t u t i n g t h e t a = T−30 and u s i n g eqn 2 . 6 . 1 1
23 // p u t t i n g x = 2 . 5 cm and y = 5cm i n i n f i n i t e
summation s e r i e s
24
25
26 n = 1;
27 x1 = (1 - cos ( %pi * n ) ) /( sinh (2* %pi * n ) ) * sin ( n ^ %pi /2) *
sinh ( n * %pi ) ;
28
19
29 n = 3;
30 x3 = (1 - cos ( %pi * n ) ) /( sinh (2* %pi * n ) ) * sin ( n ^ %pi /2) *
sinh ( n * %pi ) ;
31
32 n = 5;
33 x5 = (1 - cos ( %pi * n ) ) /( sinh (2* %pi * n ) ) * sin ( n ^ %pi /2) *
sinh ( n * %pi ) ;
34
35 x = x1 + x3 + x5 ;
36
37 T = x *100+30;
38 printf ( ” S t e a d y s t a t e t e m p e r a t u r e = %f C” ,T ) ;
1 clear all ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 9
9 // Page 51
10 printf ( ” Example 2 . 9 , Page 51 \n\n ” )
11
12 k = 330; // t h e r m a l c o n d u c t i v i t y i n W/m K
13 a = 95*10^( -6) ; // t h e r m a l e x p a n s i o n c o e f f i c i e n t
14 R = 0.01; // r a d i u s i n m e t e r s
15 To = 77; // t e m p e r a t u r e i n k e l v i n s
16 Tf = 273+50; // t e m p e r a t u r e i n k e l v i n s
17 theta1 = To - Tf ;
18 T = 273+10; // t e m p e r a t u r e i n k e l v i n s
19 theta = T - Tf ;
20 h = 20; // h e a t t r a n s f e r c o e f f i c i e n t in W
20
/mˆ2 K
21 printf ( ” \n Theta1 = %d K” , theta1 ) ;
22 printf ( ” \n Theta = %d K ” , theta ) ;
23 printf ( ” \n v /A = %. 3 f m” ,R /2) ;
24 printf ( ” \n k / a = %. 4 f ∗ 1 0 ˆ ( 6 ) J /mˆ3 K” ,( k / a ) *10^( -6) )
;
25
26 time = ( k / a ) *( R /2) / h * log ( theta1 / theta ) ;
27
28 printf ( ” \n Time t a k e n by t h e r o d t o h e a t up = %. 1 f
s e c s ” , time ) ;
29 Bi = h * R / k ;
30 printf ( ” \n B i o t number Bi = %. 2 f ∗10ˆ( −4) ” , Bi *10^4) ;
31 printf ( ” \n S i n c e B i o t number i s much l e s s t h a n 0 . 1 ,
t h e r e f o r e assumption that i n t e r n a l temperature
g r a d i e n t s a r e n e g l i g i b l e i s a good one ” ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 1 0 ( i )
9 // Page 58
10 printf ( ” Example 2 . 1 0 ( i ) , Page 58 \n\n ” )
11
12 // C e n t r e o f t h e s l a b
13 // Given d a t a
14 b = 0.005 ; // [m]
15 t = 5*60; // time , [ s e c ]
16 Th = 200 ; // [ C ]
21
17 Tw = 20 ; // [ C ]
18 h = 150 ; // [W/mˆ2 K ]
19 rho = 2200 ; // [ kg /mˆ 3 ]
20 Cp = 1050 ; // [ J / kg K ]
21 k = 0.4 ; // [W/m K ]
22 // U s i n g c h a r t s i n f i g 2 . 1 8 and 2 . 1 9 and eqn 2 . 7 . 1 9
and 2 . 7 . 2 0
23
24 theta = Th - Tw ;
25 Biot_no = h * b / k ;
26 a = k /( rho * Cp ) ; // a l p h a
27 Fourier_no = a * t / b ^2;
28
29 // From f i g 2 . 1 8 , r a t i o = t h e t a x b 0 / t h e t a o
30 ratio_b0 = 0.12;
31 // From f i g 2 . 1 8 , r a t i o = t h e t a x b 1 / t h e t a o
32 ratio_b1 = 0.48;
33
34 // T h e r e f o r e
35 theta_x_b0 = theta * ratio_b0 ; // [ C ]
36 T_x_b0 = theta_x_b0 + Tw ; // [ C ]
37 theta_x_b1 = theta * ratio_b1 ; // [ C ]
38 T_x_b1 = theta_x_b1 + Tw ; // [ C ]
39
40 // From T a b l e 2 . 2 f o r Bi = 1 . 8 7 5
41 lambda_1_b = 1.0498;
42 x = 2* sin ( lambda_1_b ) /[ lambda_1_b +( sin ( lambda_1_b ) )
*( cos ( lambda_1_b ) ) ];
43
44 // From eqn 2 . 7 . 2 0
45 theta_x_b0 = theta * x *( exp (( - lambda_1_b ^2) * Fourier_no
));
46 T_x_b0 = theta_x_b0 + Tw ;
47 printf ( ” T e m p e r a t u r e a t b=0 i s %f d e g r e e C\n ” , T_x_b0 )
;
22
Scilab code Exa 2.10.ii heat transfer coefficient at the surface
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 1 0 ( i i )
9 // Page 58
10 printf ( ” Example 2 . 1 0 ( i i ) , Page 58 \n\n ” )
11
12 // ( i i ) S u r f a c e o f t h e s l a b
13
14 b = 0.005 ; // [m]
15 t = 5*60; // time , [ s e c ]
16 Th = 200 ; // [ C ]
17 Tw = 20 ; // [ C ]
18 h = 150 ; // [W/mˆ2 K ]
19 rho = 2200 ; // [ kg /mˆ 3 ]
20 Cp = 1050 ; // [ J / kg K ]
21 k = 0.4 ; // [W/m K ]
22 // U s i n g c h a r t s i n f i g 2 . 1 8 and 2 . 1 9 and eqn 2 . 7 . 1 9
and 2 . 7 . 2 0
23 theta = Th - Tw ;
24 Biot_no = h * b / k ;
25 a = k /( rho * Cp ) ; // a l p h a
26 Fourier_no = a * t / b ^2;
27
28 // From f i g 2 . 1 8 , r a t i o = t h e t a x b 0 / t h e t a o
29 ratio_b0 = 0.12;
30 // From f i g 2 . 1 8 , r a t i o = t h e t a x b 1 / t h e t a o
31 ratio_b1 = 0.48;
23
32
33 // T h e r e f o r e
34 theta_x_b0 = theta * ratio_b0 ; // [ C ]
35 T_x_b0 = theta_x_b0 + Tw ; // [ C ]
36 theta_x_b1 = theta * ratio_b1 ; // [ C ]
37 T_x_b1 = theta_x_b1 + Tw ; // [ C ]
38
39 // From T a b l e 2 . 2 f o r Bi = 1 . 8 7 5
40 lambda_1_b = 1.0498;
41 x = 2* sin ( lambda_1_b ) /[ lambda_1_b +( sin ( lambda_1_b ) )
*( cos ( lambda_1_b ) ) ];
42
43 // From 2 . 7 . 1 9
44 theta_x_b1 = theta_x_b0 *( cos ( lambda_1_b *1) ) ;
45 T_x_b1 = theta_x_b1 + Tw ;
46 printf ( ” T e m p e r a t u r e a t b=1 i s %f d e g r e e C\n ” , T_x_b1 )
;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 1 1 ( a )
9 // Page 65
10 printf ( ” Example 2 . 1 1 ( a ) , Page 65 \n\n ” )
11
12 D = 0.05 ; // [m]
13 To = 450 ; // [ degree C]
14 Tf = 90 ; // [ degree C]
15 T = 150 ; // [ degree c ]
24
16 h = 115 ; // [W/mˆ2 K ]
17 rho = 8000 ; // [ kg /mˆ 3 ]
18 Cp = 0.42*1000 ; // [ J / kg K ]
19 k = 46 ; // [W/m K ]
20 R = D /2;
21
22 // ( a )
23 // From eqn 2 . 7 . 3 f o r a s p h e r e
24 t1 = rho * Cp * R /(3* h ) * log (( To - Tf ) /( T - Tf ) ) ; // [ s e c ]
25 t1_min = t1 /60 ; // [ min ]
26 printf ( ” Time t a k e n by t h e c e n t r e o f t h e b a l l t o
r e a c h 150 d e g r e e C i f i n t e r n a l g r a d i e n t s a r e
n e g l e c t e d i s %f s e c o n d s i . e . %f m i n u t e s \n ” ,t1 ,
t1_min ) ;
Scilab code Exa 2.11.b time taken by the centre of ball to reach temper-
ature
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 1 1 ( b )
9 // Page 65
10 printf ( ” Example 2 . 1 1 ( b ) , Page 65 \n\n ” )
11
12 D = 0.05 ; // [m]
13 To = 450 ; // [ d e g r e e C ]
14 Tf = 90 ; // [ d e g r e e C ]
15 T = 150 ; // [ d e g r e e c ]
16 h = 115 ; // [W/mˆ2 K ]
17 rho = 8000 ; // [ kg /mˆ 3 ]
25
18 Cp = 0.42*1000 ; // [ J / kg K ]
19 k = 46 ; // [W/m K ]
20 R = D /2;
21
22 // ( b )
23 // l e t r a t i o = t h e t a R 0 / t h e t a o
24 ratio = (T - Tf ) /( To - Tf ) ;
25 Bi = h * R / k ;
26 // From T a b l e 2 . 5
27 lambda_1_R = 0.430;
28 x = 2*[ sin ( lambda_1_R ) - lambda_1_R * cos ( lambda_1_R )
]/[ lambda_1_R - sin ( lambda_1_R ) * cos ( lambda_1_R ) ];
29
30 // S u b s t i t u t i n g i n e q u a t t i o n 2 . 7 . 2 9 , we have an
e q u a t i o n i n v a r i a b l e y(= a t /Rˆ 2 )
31 // S o l v i n g
32 function [ eqn ] = parameter ( y )
33 eqn = ratio - x * exp ( -( lambda_1_R ^2) *( y ) ) ;
34 funcprot (0) ;
35 endfunction
36
37 y = 5; // ( i n i t i a l
g u e s s , assumed v a l u e f o r f s o l v e
function )
38 Y = fsolve (y , parameter ) ;
39
40 a = k /( Cp * rho ) ; // a l p h a
41 t2 = Y *( R ^2) /( a ) ; // [ s e c ]
42 t2_min = t2 /60; // [ min ]
43 printf ( ” Time t a k e n by t h e c e n t r e of the b a l l to
r e a c h 150 d e g r e e C i f i n t e r n a l t e m p e r a t u r e
g r a d i e n t s a r e n o t n e g l e c t e d i s %f s e c o n d s i . e . %f
m i n u t e s ” ,t2 , t2_min ) ;
26
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 1 2
9 // Page 67
10 printf ( ” Example 2 . 1 2 , Page 67 \n\n ” )
11
12 a = 0.12 ; // [m]
13
14 T = 400 ; // [ C ]
15 To = 25 ; // [ C ]
16 t = 100/60 ; // [ h o u r ]
17 h = 10 ; // [W/mˆ2 K ]
18 k = 1.0 ; // [W/m K ]
19 alpha = 3.33*10^ -3 ; // [mˆ2/ h ]
20 // u s i n g f i g 2 . 1 8 and eqn 2 . 7 . 2 0
21
22 x1 = h * a / k ;
23 x2 = k /( h * a ) ;
24 x3 = alpha * t / a ^2;
25
26 // L e t r a t i o x = t h e t a / t h e t a o f o r x d i r e c t i o n , from
f i g 2.18
27 ratio_x = 0.82 ;
28
29 // S i m i l a r l y , f o r y d i r e c t i o n
30 ratio_y = 0.41;
31
32 // S i m i l a r l y , f o r z d i r e c t i o n
33 ratio_z = 0.30;
34
35 // T h e r e f o r e
36 total_ratio = ratio_x * ratio_y * ratio_z ;
37
27
38 T_centre = To + total_ratio *( T - To ) ; // [ d e g r e e C ]
39 printf ( ” T e m p e r a t u r e a t t h e c e n t r e o f t h e b r i c k = %f
d e g r e e C \n\n ” , T_centre ) ;
40
41 // A l t e r n a t i v e l y
42 printf ( ” A l t e r n a t i v e l y , o b t a i n i n g B i o t number and
v a l u e s o f l a m b d a 1 b and u s i n g eqn 2 . 7 . 2 0 , we g e t
\n ” )
43
44 ratio_x = 1.1310* exp ( -(0.9036^2) *0.385) ;
45 ratio_y = 1.0701* exp ( -(0.6533^2) *2.220) ;
46 ratio_z = 1.0580* exp ( -(0.5932^2) *3.469) ;
47 ratio = ratio_x * ratio_y * ratio_z ;
48
49 T_centre = To + total_ratio *( T - To ) ; // [ d e g r e e C ]
50 printf ( ” T e m p e r a t u r e a t t h e c e n t r e o f t h e b r i c k = %f
d e g r e e C \n ” , T_centre ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 1 3 ( a )
9 // Page 73
10 printf ( ” Example 2 . 1 3 ( a ) , Page 73 \n\n ” )
11
12 D = 0.003 ; // [m]
13 L = 0.03 ; // [m]
14 h = 10 ; // [W/mˆ 2 ]
15 Tf = 20 ; // [ C ]
28
16 T1 = 120 ; // [ C ]
17
18 // ( a ) Copper f i n
19 k = 350 ; // [W/m K ]
20
21 // For a c i r c u l a r c r o s s s e c t i o n
22 m = [4* h /( k * D ) ]^(1/2) ;
23 mL = m *0.03 ;
24 // T a t x = L
25 T = Tf + ( T1 - Tf ) / cosh ( m * L ) ;
26 printf ( ”mL = %f \n ” , mL ) ;
27 printf ( ” T e m p e r a t u r e a t t h e t i p o f f i n made o f c o p p e r
i s %f d e g r e e C \n ” ,T ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 1 3 ( b )
9 // Page 73
10 printf ( ” Example 2 . 1 3 ( b ) , Page 73 \n\n ” )
11
12 D = 0.003 ; // [m]
13 L = 0.03 ; // [m]
14 h = 10 ; // [W/mˆ 2 ]
15 Tf = 20 ; // [ C ]
16 T1 = 120 ; // [ C ]
17
18
19 // ( b ) S t a i n l e s s s t e e l f i n
29
20 k = 15 ; // [W/m K ]
21
22 // For a c i r c u l a r c r o s s s e c t i o n
23 m = [4* h /( k * D ) ]^(1/2) ;
24 mL = m *0.03 ;
25 // T a t x = L
26 T = Tf + ( T1 - Tf ) / cosh ( m * L ) ;
27 printf ( ”mL = %f \n ” , mL ) ;
28 printf ( ” T e m p e r a t u r e a t t h e t i p o f f i n made o f s t e e l
i s %f d e g r e e C \n ” ,T ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 1 3 ( c )
9 // Page 73
10 printf ( ” Example 2 . 1 3 ( c ) , Page 73 \n\n ” )
11
12 D = 0.003 ; // [m]
13 L = 0.03 ; // [m]
14 h = 10 ; // [W/mˆ 2 ]
15 Tf = 20 ; // [ C ]
16 T1 = 120 ; // [ C ]
17
18 // ( c ) T e f l o n f i n
19 k = 0.35 ; // [W/m K ]
20
21 // For a c i r c u l a r c r o s s s e c t i o n
22 m = [4* h /( k * D ) ]^(1/2) ;
30
23 mL = m *0.03 ;
24 // T a t x = L
25 T = Tf + ( T1 - Tf ) / cosh ( m * L ) ;
26 printf ( ”mL = %f \n ” , mL ) ;
27 printf ( ” T e m p e r a t u r e a t t h e t i p o f f i n made o f t e f l o n
i s %f d e g r e e C \n ” ,T ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 1 4
9 // Page 74
10 printf ( ” Example 2 . 1 4 , Page 74 \n\n ” )
11
12 L = 0.02 ; // [m]
13 t = 0.002 ; // [m]
14 b = 0.2 ; // [m]
15 theta1 = 200 ; // [ C ]
16 h = 15 ; // [W/mˆ2 K ]
17 k = 45 ; // [W/m K ]
18
19 Bi = h *( t /2) / k ;
20
21 // We have
22 P = 2*( b + t ) ; // [m]
23 A = b * t ; // [mˆ 2 ]
24 // T h e r e f o r e
25 mL = ([( h * P ) /( A * k ) ]^(1/2) ) * L ;
26
31
27 // From e q u a t i o n 2 . 8 . 6 , f i n e f f e c t i v e n e s s n
28 n = tanh ( mL ) / mL ;
29 printf ( ” Fin E f f e c t i v e n e s s = %f \n ” ,n ) ;
30
31 q_loss = n * h *40.4*2*10^ -4*200; // [W]
32 printf ( ” Heat l o s s r a t e from f i n s u r f a c e = %f W” ,
q_loss ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 1
9 // Page 74
10 printf ( ” Example 2 . 1 5 , Page 74 \n\n ” )
11
12
13 // Find D e c r e a s e i n t h e r m a l R e s i s t a n c e
14 // Find I n c r e a s e i n h e a t t r a n s f e r r a t e
15
16 h = 15 ; // [W/mˆ 2 .K ]
17 k = 300; // [W/m. K ]
18 T = 200; // [ C ]
19 Tsurr = 30; // [ C ]
20 d = .01; // [m]
21 L = .1; // [m]
22 A = .5*.5 // [mˆ 2 ]
23 n = 100 // Number o f P i n s
24
25 Bi = h * d /2/ k ; // B i o t Number
32
26 // V a l u e o f B i o t Number i s much l e s s t h a n . 1
27 // Thus u s i n g e q u a t i o n 2 . 8 . 6
28 mL = ( h *4/ k / d ) ^.5* L ;
29 zi = tanh ( mL ) / mL ;
30 Res1 = 1/ h / A ; // Thermal r e s i s t a n c e w i t h o u t
f i n s , [ K/W]
31 Res2 = 1/( h *( A - n * %pi /4* d ^2 + zi *( n * %pi * d * L ) ) ) ; //
Thermal r e s i s t a n c e w i t h f i n s , [ K/W]
32
33 delRes = Res1 - Res2 ; // [ K/W]
34 // I n c r e a s e i n h e a t t r a n s f e r r a t e
35 q = (T - Tsurr ) / Res2 - (T - Tsurr ) / Res1 ; // [W]
36
37 printf ( ” \n\n D e c r e a s e i n t h e r m a l r e s i s t a n eat
s u r f a c e %. 4 f K/W. \ n I n c r e a s e i n h e a t t r a n s f e r
r a t e %. 1 f W” , delRes , q )
38 //END
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 2
6 // Heat C o n d u c t i o n i n S o l i d s
7
8 // Example 2 . 1 6
9 // Page 75
10 printf ( ” Example 2 . 1 6 , Page 75 \n\n ” )
11
12 // T h e o r e t i c a l Problem
13
14 printf ( ’ \n\n T h i s i s a T h e o r e t i c a l Problem , d o e s n o t
i n v o l v e any m a t h e m a t i c a l c o m p u t a t i o n . ’ ) ;
33
15 //END
34
Chapter 3
Thermal Radiation
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 1
9 // Page 114
10 printf ( ” Example 3 . 1 , Page 114 \n\n ” ) ;
11
12 T = 5779 ; // [ Temperature , i n K e l v i n ]
13 // From Wein ’ s law , eqn 3 . 2 . 8
14 lambda_m = 0.00290/ T ; // [m]
15 // S u b s t i t u t i n g t h i s v a l u e i n p l a n k ’ s law , we g e t
16 e = 2*( %pi ) *0.596*(10^ -16) /(((0.5018*10^ -6) ^5) *( exp
(0.014387/0.00290) -1) ) ; // [W/mˆ2 m]
17
18 e_bl_max = e / 10^6 ;
19
20 printf ( ” V a l u e o f e m i s s i v i t y on sun s u r f a c e i s %f W/m
35
ˆ2 um \n ” , e_bl_max ) ; // [W/mˆ2 um ]
21
22 e_earth = e_bl_max *((0.695*10^6) /(1.496*10^8) ) ^2 ;
23
24 printf ( ” The v a l u e o f e m m i s s i v i t y on e a r t h s s u r f a c e
i s %f W/mˆ2 um” , e_earth )
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 2
9 // Page 115
10 printf ( ” Example 3 . 2 , Page 115 \n\n ” )
11
12 // Heat e m i s s i o n
13 Stefan_constt = 5.67*10^( -8) ; // (W/mˆ 2 .Kˆ 4 )
14 T = 1500; // t e m p e r a t u r e is
in kelvins
15 eb = ( Stefan_constt ) *( T ^(4) ) ; // e n e r g y
r a d i a t e d by b l a c k b o d y
16 // e m i s s i o n i n 0 . 3 um t o 1um
17 e = 0.9; // e m i s s i v i t y
18 lamda1 = 1; // w a v e l e n g t h i s i n um
19 lamda2 = 0.3; // w a v e l e n g t h i s i n um
20 D0_1 =0.5*(0.01972+0.00779) ; // From t a b l e 3 . 1
page− 114
21 D0_2 =0; // From t a b l e 3 . 1 page
− 114
22 q = e *( D0_1 - D0_2 ) * Stefan_constt * T ^(4) ; // i n W/mˆ2
36
23 printf ( ” \n w a v e l e n g t h ∗ temp = %d um K” ,1*1500) ;
24 printf ( ” \n w a v e l e n g t h ∗ temp a t 0 . 3 um = %d um K”
,0.3*1500) ;
25 printf ( ” \n\n R e q u i r e d h e a t f l u x , q = %d W/mˆ2 ” ,q ) ;
Scilab code Exa 3.3 Absorbed radiant flux and absorptivity and reflectiv-
ity
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 3
9 // Page 119
10 printf ( ” Example 3 . 3 , Page 119 \n\n ” )
11
12
13 a0_2 =1; // a b s o r p t i v i t y
14 a2_4 =1; // a b s o r p t i v i t y
15 a4_6 =0.5; // a b s o r p t i v i t y
16 a6_8 =0.5; // a b s o r p t i v i t y
17 a8_ =0; // a b s o r p t i v i t y
18 H0_2 =0; // I r r a d i a t i o n i n W/mˆ2 um
19 H2_4 =750; // I r r a d i a t i o n i n W/mˆ2 um
20 H4_6 =750; // I r r a d i a t i o n i n W/mˆ2 um
21 H6_8 =750; // I r r a d i a t i o n i n W/mˆ2 um
22 H8_ =750; // I r r a d i a t i o n i n W/mˆ2 um
23 Absorbed_radiant_flux =1*0*(2 -0) +1*750*(4 -2)
+0.5*750*(8 -4) +0;
24 H = 750*(8 -2) ; // I n c i d e n t f l u x
25 a = Absorbed_radiant_flux / H ;
26 p = 1 - a ; // S i n c e t h e s u r f a c e i s opaque
37
27 printf ( ” \n Absorbed r a d i a n t f l u x = %d W/mˆ2 ” ,
Absorbed_radiant_flux ) ;
28 printf ( ” \n I n c i d e n t f l u x = %d W/mˆ2 ” ,H ) ;
29 printf ( ” \n A b s o r p t i v i t y = %. 3 f ” ,a ) ;
30 printf ( ” \n S i n c e t h e s u r f a c e i s opaque r e f l e c t i v i t y
= %. 3 f ” ,p ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 4 ( a )
9 // Page 123
10 printf ( ” Example 3 . 4 ( a ) , Page 123 \n\n ” )
11
12
13 e = 0.08; // e m i s s i v i t y
14 T = 800; // t e m p e r a t u r e , [ K ]
15
16 Stefan_constt = 5.67*10^( -8) ; // [W/mˆ 2 .Kˆ 4 ]
17 // From S t e f a n Boltzmann law , e q u a t i o n 3 . 2 . 1 0
18 q = e * Stefan_constt * T ^4; // [W/mˆ 2 ]
19 printf ( ” \n Energy e m i t t e d = %. 1 f W/mˆ2 ” ,q ) ;
20
21 // ( a )
22 // T h e r e f o r e
23 in = ( q /( %pi ) ) ;
24 printf ( ” \n Energy e m i t t e d n o r m a l t o t h e s u r f a c e = %
. 1 f W/mˆ2 s r ” , in ) ;
38
Scilab code Exa 3.4.b Ratio of radiant flux to the emissive power
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 4 ( b )
9 // Page 123
10 printf ( ” Example 3 . 4 ( b ) , Page 123 \n\n ” )
11
12
13 e = 0.08; // e m i s s i v i t y
14 T = 800; // t e m p e r a t u r e , [ K ]
15
16 Stefan_constt = 5.67*10^( -8) ; // [W/mˆ 2 .Kˆ 4 ]
17 // From S t e f a n Boltzmann law , e q u a t i o n 3 . 2 . 1 0
18 q = e * Stefan_constt * T ^4; // [W/mˆ 2 ]
19 in = ( q /( %pi ) ) ;
20
21 // ( b )
22 // R a d i a n t f l u x e m i t t e d i n t h e c o n e 0 <= p z i <= 50
d e g r e e , 0 <= t h e t a <= 2∗ p i
23 q_cone =2*( %pi ) * in *( - cos (100*( %pi /180) ) + cos (0) ) /4;
24
25 printf ( ” \n R a d i a n t f l u x e m i t t e d i n t h e c o n e =%. 1 f W/
mˆ2 ” , q_cone ) ;
26
27 Ratio = q_cone / q ;
28 printf ( ” \n R a t i o = %. 3 f ” , Ratio ) ;
39
Scilab code Exa 3.5 Rate of incident radiation
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 5
9 // Page 124
10 printf ( ” Example 3 . 5 , Page 124 \n\n ” )
11
12 l1 = 0.5 ; // w a v e l e n g t h , [ um ]
13 l2 = 1.5 ; // w a v e l e n g t h , [ um ]
14 l3 = 2.5 ; // w a v e l e n g t h , [ um ]
15 l4 = 3.5 ; // w a v e l e n g t h , [ um ]
16 H1 = 2500 ; // [W/mˆ2 um ]
17 H2 = 4000 ; // [W/mˆ2 um ]
18 H3 = 2500 ; // [W/mˆ2 um ]
19
20 // S i n c e t h e i r r i d i a t i o n i s d i f f u s e , t h e s p e c t r a l
i n t e n s i t y i s g i v e n by eqn 3 . 4 . 1 4 and 3 . 4 . 8
21 // I n t e g r a t i n g i l a m b d a o v e r t h e d i r e c t i o n s o f t h e
s p e c i f i e d s o l i d a n g l e and u s i n g f i g 3 . 1 2
22
23
24 flux = 3/4*[ H1 *( l2 - l1 ) + H2 *( l3 - l2 ) + H3 *( l4 - l3 ) ];
25 printf ( ” Rate a t which r a d i a t i o n i s i n c i d e n t on t h e
s u r f a c e = %f W/mˆ2 ” , flux ) ;
40
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 6
9 // Page 132
10 printf ( ” Example 3 . 6 , Page 132 \n\n ” )
11
12 // T h i s i s a t h e o r e t i c a l p r o b l e m w i t h no n u m e r i c a l
data
13 printf ( ” T h i s i s a t h e o r e t i c a l p r o b l e m w i t h no
n u m e r i c a l d a t a \n ” ) ;
14
15 // C o n s i d e r i n g an e l e m e n t a r y r i n g dA2 o f w i d t h d r a t
an a r b i t a r y r a d i u s r , we have
16 // r = h∗ tanB1
17 // dA2 = 2∗ %pi ∗ r ∗ d r
18 // dA2 = 2∗ %pi ∗ ( h ˆ 2 ) ∗ t a n ( B1 ) ∗ s e c ˆ 2 ( B1 ) ∗dB1
19 // B2 = B1 , s i n c e s u r f a c e s a t e p a r a l l e l , and
20 // L = h / c o s ( B1 )
21 // S u b s t i t u t i n g i n eqn 3 . 6 . 7
22 // F12 = s i n ˆ 2 ( a )
23
24
25 printf ( ” C o n s i d e r i n g an e l e m e n t a r y r i n g dA2 o f w i d t h
d r a t an a r b i t a r y r a d i u s r , we have \n ” ) ;
26 printf ( ” r = h∗ tanB1 \n ” ) ;
27 printf ( ”dA2 = 2∗ p i ∗ r ∗ d r \n ” ) ;
28 printf ( ”dA2 = 2∗ p i ∗ ( h ˆ 2 ) ∗ t a n ( B1 ) ∗ s e c ˆ 2 ( B1 ) ∗dB1 \n ” ) ;
29 printf ( ”B2 = B1 , s i n c e s u r f a c e s a t e p a r a l l e l , and \n
”);
30 printf ( ”L = h / c o s ( B1 ) \n ” ) ;
31 printf ( ” S u b s t i t u t i n g i n eqn 3 . 6 . 7 \n ” ) ;
32 printf ( ” F12 = s i n ˆ 2 ( a ) \n ” ) ;
41
Scilab code Exa 3.7 Shape factor
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 7
9 // Page 134
10 printf ( ” Example 3 . 7 , Page 134 \n\n ” )
11
12 // T h i s i s a t h e o r e t i c a l p r o b l e m w i t h no n u m e r i c a l
data
13 printf ( ” T h i s i s a t h e o r e t i c a l p r o b l e m w i t h no
n u m e r i c a l d a t a \n ” ) ;
14
15
16 // C o n s i d e r i n g an e l e m e n t a r y c i r c u l a r r i n g on t h e
s u r f a c e o f t h e s p h e r e ’ s s u r f a c e a t any a r b i t a r y
anglr B,
17 // we have B1 = B , B2 = 0 , L = R and dA 2 = 2∗ %pi ∗ (R
ˆ 2 ) ∗ ( s i n (B) ) dB
18 // T h e r e f o r e , from e q u a t i o n 3 . 6 . 7
19 // F12 = s i n ˆ 2 ( a )
20
21 printf ( ” C o n s i d e r i n g an e l e m e n t a r y c i r c u l a r r i n g on
t h e s u r f a c e o f t h e s p h e r e s u r f a c e a t any a r b i t a r y
a n g l r B \n ” ) ;
22 printf ( ”we have B1 = B , B2 = 0 , L = R and dA 2 = 2∗
p i ∗ (Rˆ 2 ) ∗ ( s i n (B) ) dB \n ” ) ;
23 printf ( ” T h e r e f o r e , from e q u a t i o n 3 . 6 . 7 \n ” ) ;
24 printf ( ” F12 = s i n ˆ 2 ( a ) ” ) ;
42
Scilab code Exa 3.8 Shape factor F12
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 8
9 // Page 135
10 printf ( ” Example 3 . 8 , Page 135 \n\n ” )
11
12 // From eqn 3 . 7 . 5 o r f i g 3 . 1 9
13 F65 = 0.22;
14 F64 = 0.16;
15 F35 = 0.32;
16 F34 = 0.27;
17 A1 = 3; // [mˆ 2 ]
18 A3 = 3; // [mˆ 2 ]
19 A6 = 6; // [mˆ 2 ]
20
21 // U s i n g a d d i t i v e and r e c i p r o c a l r e l a t i o n s
22 // We have F12 = F16 − F13
23
24 F61 = F65 - F64 ;
25 F31 = F35 - F34 ;
26
27 F16 = A6 / A1 * F61 ;
28 F13 = A3 / A1 * F31 ;
29
30 F12 = F16 - F13 ;
31
32 printf ( ” F 1 −2 = %f ” , F12 ) ;
43
Scilab code Exa 3.9 Shape factor
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 9
9 // Page 136
10 printf ( ” Example 3 . 9 , Page 136 \n\n ” )
11
12 // T h i s i s a t h e o r e t i c a l problem , d o e s n o t i n v o l v e
any n u m e r i c a l c o m p u t a t i o n
13 printf ( ” T h i s i s a t h e o r e t i c a l problem , d o e s n o t
i n v o l v e any n u m e r i c a l c o m p u t a t i o n \n ” ) ;
14 // D e n o t i n g a r e a o f c o n i c a l s u r f a c e by A1
15 // C o n s i d e r i n g an i m a g i n a r y f l a t s u r f a c e A2 c l o s i n g
the c o n i c a l cavity
16
17 F22 = 0 ; // F l a t surface
18
19 // from eqn 3 . 7 . 2 , we have F11 + F12 = 1 and F22 +
F21 = 1
20 F21 = 1 - F22 ;
21
22 // F12 = A2/A1∗ F21 ;
23 // F11 = 1 − F12 ;
24 // F11 = 1 − s i n ( a )
44
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 1 0
9 // Page 138
10 printf ( ” Example 3 . 1 0 , Page 138 \n\n ” )
11
12 sigma = 5.670*10^ -8 ;
13 T1 = 473 ; // [ K ]
14 T2 = 373 ; // [ K ]
15 A1 = 1*2 ; // a r e a , [mˆ 2 ]
16 X = 0.25;
17 Y = 0.5 ;
18 // From eqn 3 . 7 . 4
19 F12 = (2/( %pi * X * Y ) ) *[ log ((((1+ X ^2) *(1+ Y ^2) ) /(1+ X ^2+ Y
^2) ) ^(1/2) ) + Y *((1+ X ^2) ^(1/2) ) * atan ( Y /((1+ X ^2)
^(1/2) ) ) + X *((1+ Y ^2) ^(1/2) ) * atan ( X /((1+ Y ^2)
^(1/2) ) ) - Y * atan ( Y ) - X * atan ( X ) ];
20
21
22 q1 = sigma * A1 *( T1 ^4 - T2 ^4) *[(1 - F12 ^2) /(2 -2* F12 ) ];
23
24 printf ( ” Net r a d i a t i v e h e a t t r a n s f e r from t h e s u r f a c e
= %f W \n ” , q1 ) ;
1 clear all ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
45
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 1 1
9 // Page 141
10 printf ( ” Example 3 . 1 1 , Page 141 \n\n ” )
11
12 // A l l modes o f h e a t t r a n s f e r a r e i n v o l v e d
13 // l e t s t e a d y s t a t e h e a t f l u x f l o w i n g t h r o u g h t h e
c o m p o s i t e s l a b be ( q / a )
14 h1 = 20; // [W/mˆ2 K ]
15 w1 = 0.2; // [m]
16 k1 = 1; // [W/m K ]
17 e1 = 0.5; // e m m i s i v i t y a t s u r f c e 1
18 e2 = 0.4; // e m m i s i v i t y a t s u r f c e 2
19 w2 = 0.3; // [m]
20 k2 = 0.5; // [W/m K ]
21 h2 = 10; // [W/mˆ2 K ]
22 T1 = 473; // [ K e l v i n ]
23 T2 = 273+40; // [ K e l v i n ]
24 stefan_cnst = 5.67 e -08; // [W/mˆ2 Kˆ 4 ]
25
26 // For r e s i s t a n c e s 1 and 2
27 function [ f ]= temperature ( T )
28 f (1) = ( T1 - T (1) ) /(1/ h1 + w1 / k1 ) - ( T (2) - T2 ) /(
w2 / k2 + 1/ h2 ) ;
29 f (2) = stefan_cnst *( T (1) ^4 - T (2) ^4) /(1/ e1 + 1/
e2 -1) - ( T (2) - T2 ) /( w2 / k2 + 1/ h2 ) ;
30 funcprot (0) ;
31 endfunction
32
33 T = [10 10]; // assumed i n i t i a l values for fsolve
function
34 y = fsolve (T , temperature ) ;
35
36 printf ( ” \n S t e a d y s t a t e h e a t f l u x q /A = %. 1 f W/mˆ2 ”
,( T1 - y (1) ) /(1/ h1 + w1 / k1 ) ) ;
46
Scilab code Exa 3.12 Rate of heat loss
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 1 2
9 // Page 145
10 printf ( ” Example 3 . 1 2 , Page 145 \n\n ” )
11
12 D = 0.02 ; // [m]
13 T1 = 1000+273 ; // [ K ]
14 T2 = 27+273 ; // [ K ]
15 s = 5.670*10^ -8 ; // s t e f a n s c o n s t a n t
16 // Assuming t h e o p e n i n g i s c l o s e d by an i m a g i n a r y
s u r f a c e a t t e m p e r a t u r e T1
17 // U s i n g e q u a t i o n 3 . 1 0 . 3 , we g e t
18 q = s *1* %pi *(( D /2) ^2) *( T1 ^4 - T2 ^4) ; // [W]
19
20 printf ( ” Rate a t which h e a t i s l o s t by r a d i a t i o n = %f
W” ,q ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
47
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 1 3
9 // Page 146
10 printf ( ” Example 3 . 1 3 , Page 146 \n\n ” )
11
12 D = 0.32 ; // [m]
13 D_s = 0.36 ; // [m]
14 e = 0.02 ; // e m i s s i v i t y
15 l = 201 ; // [ kJ / kg ]
16 rho = 800 ; // [ kg /mˆ 3 ]
17 s = 5.670*10^ -8 ;
18
19 T2 = 303 ; // [ K ]
20 T1 = 77 ; // [ K ]
21
22 // From e q u a t i o n 3 . 1 0 . 1
23 q1 = s *4* %pi *(( D /2) ^2) *( T1 ^4 - T2 ^4) /[1/ e +(( D / D_s ) ^2)
*(1/ e -1) ]; // [W]
24
25 evap = abs ( q1 ) *3600*24/( l *1000) ; // [ kg / day ]
26 mass = 4/3* %pi *(( D /2) ^3) * rho ;
27 boiloff = evap / mass *100 ; // p e r c e n t
28
29 T_drop = ( abs ( q1 ) ) /(4* %pi *(( D /2) ^2) ) *(1/100) ; // [ C ]
30
31 printf ( ” Rate a t which n i t r o g e n e v a p o r a t e s = %f kg /
day \n ” , evap )
32 printf ( ” B o i l − o f f r a t e = %f p e r c e n t \n ” , boiloff ) ;
33 printf ( ” T e m p e r a t u r e d r o p b e t w e e n l i q u i d N i t r o g e n and
i n n e r s u r f a c e = %f C” , T_drop ) ;
1 clear ;
48
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 1 4
9 // Page 147
10 printf ( ” Example 3 . 1 4 , Page 147 \n\n ” )
11
12 D = 1 ; // [m]
13 r = 6250 ; // [ km ]
14 D_surf = 300 ; // [ km ]
15 s = 5.670*10^ -8;
16 e = 0.3 ;
17 Tc = -18+273 ; // [ K ]
18 T_surf = 27+273 ; // [ K ]
19
20 // Rate o f e m i s s i n o o f r a d i a n t e n e r g y from t h e two
faces of s a t e l l i t e disc
21 r_emission = 2* e * %pi *(( D /2) ^2) * s * Tc ^4; // [W]
22
23 // A2∗ F21 = A1∗ F12
24 sina = ( r /( r + D_surf ) ) ;
25 F12 = sina ^2;
26
27 // Rate a t which t h e s a t e l l i t er e c e i v e s and a b s o r b s
e n e r g y coming from e a r t h
28 r_receive = e * s *( %pi *(( D /2) ^2) ) * F12 * T_surf ^4; // [W]
29
30 r_loss = r_emission - r_receive ; // [W]
31
32 printf ( ” Net Rate a t which e n e r g y i s l e a v i n g t h e
s a t e l l i t e = %f W” , r_loss ) ;
49
Scilab code Exa 3.15 Net radiative heat transfer
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 3
6 // Thermal R a d i a t i o n
7
8 // Example 3 . 1 5
9 // Page 151
10 printf ( ” Example 3 . 1 5 , Page 151 \n\n ” )
11
12 // From e x a m p l e 3 . 1 0
13 F12 = 0.0363;
14 F11 = 0;
15 F13 = 1 - F11 - F12 ;
16 // S i m i l a r l y
17 F21 = 0.0363;
18 F22 = 0;
19 F23 = 0.9637;
20
21 // Now , F31 = A1/A3∗ F13
22 F31 = 2/24* F13 ;
23 // T h e r e f o r e
24 F32 = F31 ;
25 F33 = 1 - F31 - F32 ;
26
27 // S u b s t i t u t i n g i n t o e q u a t i o n 3 . 1 1 . 6 , 3 . 1 1 . 7 ,
3 . 1 1 . 8 , we have f ( 1 ) , f ( 2 ) , f ( 3 )
28
29 function [ f ]= flux ( B )
30 f (1) = B (1) - 0.4*0.0363* B (2) - 0.4*0.9637* B (3) -
0.6*(473^4) *(5.670*10^ -8) ;
31 f (2) = -0.4*0.0363* B (1) + B (2) - 0.4*0.9637* B (3)
- 0.6*(5.670*10^ -8) *(373^4) ;
32 f (3) = 0.0803* B (1) + 0.0803* B (2) - 0.1606* B (3) ;
33 funcprot (0) ;
50
34 endfunction
35
36 B = [0 0 0];
37 y = fsolve (B , flux ) ;
38 printf ( ” \n B1 = %. 1 f W/mˆ2 ” ,y (1) ) ;
39 printf ( ” \n B2 = %. 1 f W/mˆ2 ” ,y (2) ) ;
40 printf ( ” \n B3 = %. 1 f W/mˆ2 \n ” ,y (3) ) ;
41
42 // Therefore
43 H1 = 0.0363* y (2) + 0.9637* y (3) ; // [W/mˆ 2 ]
44 // and
45 q1 = 2*( y (1) - H1 ) ; // [W]
46
47 printf ( ” Net r a d i a t i v e h e a t t r a n s f e r = %f W” , q1 ) ;
51
Chapter 4
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 4
6 // P r i n c i p l e s o f F l u i d Flow
7
8 // Example 4 . 1
9 // Page 172
10 printf ( ” Example 4 . 1 , Page 172 \n\n ” ) ;
11
12 L = 3 ; // Length , [m]
13 D = 0.01 ; // ID , [m]
14 V = 0.2 ; // A v e r a g e V e l o c i t y , [m/ s ]
15
16 // From T a b l e A. 1 a t 10 d e g r e e C
17 rho =999.7 ; // [ kg /mˆ 3 ]
18 v =1.306 * 10^ -6 ; // [mˆ2/ s ]
19
20 Re_D =0.2*0.01/(1.306*10^ -6) ;
21
52
22 // t h i s v a l u e i s l e s s t h a n t h e t r a n s i t i o n R e y n o l d s
number 2 3 0 0 .
23 // Hence f l o w i s l a m i n a r . From eqn 4 . 4 . 1 9
24 f = 16/ Re_D ;
25
26 // from eqn 4 . 4 . 1 7
27 delta_p = 4* f *( L / D ) *( rho * V ^2) /2;
28
29 // s i n c e f l o w i s l a m i n a r
30 V_max = 2* V ;
31
32 printf ( ” P r e s s u r e d r o p i s %f Pa \n ” , delta_p ) ;
33 printf ( ” Maximum v e l o c i t y i s %f m/ s ” , V_max ) ;
Scilab code Exa 4.2.a Pressure drop and maximum velocity calculation
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 4
6 // P r i n c i p l e s o f F l u i d Flow
7
8 // Example 4 . 2 ( a )
9 // Page 180
10 printf ( ” Example 4 . 2 ( a ) , Page 180 \n\n ” )
11
12 L = 3 ; // [m]
13 D = 0.01 ; // [m]
14 V = 0.2 ; // [m/ s ]
15
16 // ( a )
17 printf ( ” ( a ) I f t h e t e m p e r a t u r e o f w a t e r i s i n c r e a s e d
t o 80 d e g r e e C \n ” ) ;
18
53
19
20 // P r o p e r t i e s o f w a t e r a t 80 d e g r e e C
21 rho = 971.8 ; // [ kg /mˆ 3 ]
22 v = 0.365 * 10^ -6 ; // [mˆ2/ s ]
23
24 Re_D = D * V / v ;
25
26 // f l o w i s t u r b i l e n t , s o from eqn 4 . 6 . 4 a
27
28 f =0.079*( Re_D ) ^( -0.25) ;
29 delta_p = (4* f * L * rho * V ^2) /( D *2) ; // [ Pa ]
30 printf ( ” P r e s s u r e d r o p i s %f Pa \n ” , delta_p ) ;
31
32 // from eqn 4 . 4 . 1 6
33
34 // x = ( T w/ p ) ˆ 0 . 5 = ( ( f / 2 ) ˆ 0 . 5 ) ∗V ;
35 x = (( f /2) ^0.5) * V ;
36 y_plus = 0.005* x /(0.365*10^ -6) ;
37
38 // from eqn 4 . 6 . 1 c & 4 . 6 . 2
39
40 V_max = x *(2.5* log ( y_plus ) + 5.5) ; // [m/ s ]
41 ratio = V_max / V ;
42 printf ( ”V max = %f m/ s \n ” , V_max ) ;
43 printf ( ”V max/ V bar = %f \n\n ” , ratio ) ;
Scilab code Exa 4.2.b Pressure drop and maximum velocity calculation
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 4
6 // P r i n c i p l e s o f F l u i d Flow
7
54
8 // Example 4 . 2 ( b )
9 // Page 180
10 printf ( ” Example 4 . 2 ( b ) , Page 180 \n\n ” )
11
12 L = 3 ; // [m]
13 D = 0.01 ; // [m]
14 V = 0.2 ; // [m/ s ]
15
16 // ( b )
17
18 V1 =0.7;
19 v1 = 1.306 * 10^ -6 ; // [mˆ2/ s ]
20
21 printf ( ” ( b ) I f t h e v e l o c i t y i s i n c r e a s e d t o 0 . 7 \n ” )
;
22 // i f v e l o c i t y o f w a t e r i s 0 . 7 m/ s
23 V1 =0.7; // [m/ s ]
24 Re_D1 = V1 * D /(1.306*10^ -6) ;
25 printf ( ” R e y n o l d s no i s %f \n ” , Re_D1 ) ;
26
27 // f l o w i s a g a i n t u r b u l e n t
28 f1 = 0.079*( Re_D1 ) ^( -0.25) ;
29
30 delta_p1 = (4* f1 * L *999.7*0.7^2) /(0.01*2) ; // [ Pa ]
31 printf ( ” P r e s s u r e d r o p i s %f Pa \n ” , delta_p1 ) ;
32
33 // x1 = ( T w/ p ) ˆ 0 . 5 = ( ( f 1 / 2 ) ˆ 0 . 5 ) ∗V ;
34 x1 = (( f1 /2) ^0.5) * V1 ;
35
36 y1_plus = 0.005* x1 /( v1 ) ;
37 printf ( ” y+ a t c e n t r e l i n e = %f \n ” , y1_plus ) ;
38
39 V_max1 = x1 *(2.5* log ( y1_plus ) + 5.5) ; // [m/ s ]
40 printf ( ”V max i s %f m/ s \n ” , V_max1 ) ;
41
42 ratio1 = V_max1 / V1 ;
43 printf ( ”Vmax/ Vbar = %f ” , ratio1 ) ;
55
Scilab code Exa 4.3 Pressure drop and power needed
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 4
6 // P r i n c i p l e s o f F l u i d Flow
7
8 // Example 4 . 3
9 // Page 181
10 printf ( ” Example 4 . 3 , Page 181 \n\n ” )
11 P = 80 * 10^3 ; // [ Pa ]
12 L = 10 ; // [m]
13 V_bar = 1.9 ; // [m/ s ]
14 l = 0.25 ; // [m]
15 b = 0.15 ; // [m]
16
17 // F u l l y d e v e l o p e d f l o w
18
19 // From T a b l e A . 2 , f o r a i r a t ! atm p r e s s u r e and 25
degree C
20 rho = 1.185 ; // [ kg /mˆ 3 ]
21 mew = 18.35 * 10^ -6 ; // [ kg /m s ]
22
23 // At 80 kPa and 25 d e g r e e C
24 rho1 = rho *(80/101.3) ; // [ kg /mˆ 3 ]
25
26 // For g i v e n d u c t r =(b/ a )
27 r = b / l ;
28
29 D_e = (4* l /2* b /2) /( l /2 + b /2) ; // [m]
30
31 // From eqn 4 . 6 . 7
56
32
33 D_l = [2/3 + 11/24*0.6*(2 -0.6) ]* D_e ; // [m]
34
35 // R e y n o l d s no b a s e d on D l
36
37 Re = rho1 * D_l * V_bar / mew ;
38 printf ( ” R e y n o l d s no = %f \n ” , Re ) ;
39
40 f = 0.079*( Re ^ -0.25) ;
41 printf ( ” f = %f \n ” ,f ) ;
42
43 // From eqn 4 . 4 . 1 7
44
45 delta_P = 4* f *( L / D_l ) *( rho1 *( V_bar ^2) /2) ;
46 printf ( ” P r e s s u r e d r o p = %f Pa \n ” , delta_P ) ;
47
48 power = delta_P *( V_bar * l * b )
49 printf ( ” Power r e q u i r e d = %f W” , power ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 4
6 // P r i n c i p l e s o f F l u i d Flow
7
8 // Example 4 . 4
9 // Page 189
10 printf ( ” Example 4 . 4 , Page 189 \n\n ” )
11
12 l = 2 ; // [m]
13 b = 1 ; // [m]
14 V = 1 ; // [m/ s ]
57
15
16 // From t a b l e A. 2
17
18 rho = 1.060 ; // [ kg /mˆ 3 ]
19 v = 18.97 * 10^ -6 ; // [mˆ2/ s ]
20
21 // At x = 1 . 5m
22 x = 1.5 ; // [m]
23 Re = V * x / v ; // R e y n o l d s number
24
25 // From eqn 4 . 8 . 1 2
26
27 d = 5* x /( Re ^(1/2) ) *1000 ; // [mm]
28 printf ( ” T h i c k n e s s o f Boundary l a y e r a t x = 1 . 5 i s %f
mm \n ” ,d )
29
30 Re_l = V * l / v ;
31
32 // From eqn 4 . 8 . 1 9 and 4 . 8 . 1 6
33
34 c_f = 1.328* Re_l ^ -(1/2) ; // d r a g c o e f f i c i e n t
35 printf ( ” Drag C o e f f i c i e n t c f = %f \n ” , c_f ) ;
36
37 F_d = 0.00409*(1/2) * rho *(2* l * b ) *1^2;
38 printf ( ” Drag F o r c e F D = %f N” , F_d ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 4
6 // P r i n c i p l e s o f F l u i d Flow
7
58
8 // Example 4 . 5
9 // Page 195
10 printf ( ” Example 4 . 5 , Page 195 \n\n ” ) ;
11
12 l = 2 ; // [m]
13 v = 4 ; // [m/ s ]
14
15 // From T a b l e A. 2
16
17 mew = 18.1*10^ -6; // [ N s /mˆ 2 ]
18 rho = 1.205*1.5; // [ kg /mˆ 3 ]
19
20 Re_l = rho * v * l / mew ;
21 // Boundary l a y e r i s p a r t l y l a m i n a r and p a r t l y
t u r b u l e n t , we s h a l l u s e eqn 4 . 1 0 . 4
22 Cf = 0.074*(7.989*10^5) ^( -0.2) - 1050/ Re_l ;
23 printf ( ” Drag c o e f f i c i e e n t i s %f \n ” , Cf )
24
25 D_f = Cf *1/2* rho * l * v ^2;
26 printf ( ” Drag f o r c e p e r m e t e r w i d t h = %f N \n ” , D_f ) ;
27
28 // from eqn 4 . 1 0 . 1
29
30 x = 3*10^5 * (18.1*10^ -6) /(1.808*4) ;
31 printf ( ” V a l u e o f x c i s %f m” ,x ) ;
59
Chapter 5
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 5
6 // Heat T r a n s f e r by F o r c e d C o n v e c t i o n
7
8
9 // Example 5 . 1 ( a )
10 // Page 209
11 printf ( ” Example 5 . 1 ( a ) \n\n ” )
12
13 D = 0.015 ; // [m]
14 Q = 0.05 ; // [mˆ3/ h ]
15 H = 1000 ; // [W/mˆ 2 ]
16 T_b = 40 ; // [ d e g r e e C ]
17
18 // From t a b l e A . 1 , p r o p e r t i e s a t 40 d e g r e e C
19 k = 0.634 ; // [W/m K ]
60
20 v = 0.659*10^ -6 ; // [mˆ2/ s ]
21
22 V_bar = 4* Q /(( %pi ) * D ^2) ;
23
24 Re_D = V_bar * D / v ;
25
26 // T h e r e f o r e , Laminar Flow , from eqn 5 . 2 . 8
27
28 h = 4.364* k / D ; // [W/mˆ2 K ]
29
30 printf ( ” ( a ) L o c a l h e a t t r a n s f e r c o e f f i c i e n t i s %f W/
mˆ2 K \n ” ,h ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 5
6 // Heat T r a n s f e r by F o r c e d C o n v e c t i o n
7
8
9 // Example 5 . 1 ( b )
10 // Page 209
11 printf ( ” Example 5 . 1 ( b ) \n\n ” )
12
13 D = 0.015 ; // [m]
14 Q = 0.05 ; // [mˆ3/ h ]
15 H = 1000 ; // [W/mˆ 2 ]
16 T_b = 40 ; // [ d e g r e e C ]
17
18 // From t a b l e A . 1 , p r o p e r t i e s a t 40 d e g r e e C
19 k = 0.634 ; // [W/m K ]
20 v = 0.659*10^ -6 ; // [mˆ2/ s ]
61
21
22 V_bar = 4* Q /(( %pi ) * D ^2) ;
23
24 Re_D = V_bar * D / v ;
25
26 // T h e r e f o r e , Laminar Flow , from eqn 5 . 2 . 8
27
28 h = 4.364* k / D ;
29
30 // From t h e d e f i n i t i o n o f h i n eqn 5 . 2 . 3 , t h e local
wal t o b u l k mean t e m p e r a t u r e d i f f e r e n c e i s given
by
31
32 T_w = H / h + T_b ;
33
34 printf ( ” ( b ) Wall T e m p e r a t u r e Tw = %f d e g r e e C” , T_w ) ;
Scilab code Exa 5.2 ratio of thermal entrance length to entrance length
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 5
6 // Heat T r a n s f e r by F o r c e d C o n v e c t i o n
7
8
9 // Example 5 . 2
10 // Page 213
11 printf ( ” Example 5 . 2 , Page 213 \n\n ” )
12
13 // From eqn 5 . 2 . 1 2 and 4 . 4 . 2 0
14 // L e t r = Lth / Le
15 // r = 0 . 0 4 3 0 5 ∗ Pr / 0 . 0 5 7 5 ;
16
62
17 function [ T ]= r ( Pr )
18 T = 0.04305* Pr /0.0575
19 endfunction
20
21 // For Pr = 0 . 0 1
22 r1 = r (0.01) ;
23 // For Pr = 0 . 1
24 r2 = r (1) ;
25 // For Pr = 100
26 r3 = r (100) ;
27
28 printf ( ” Lth / Le a t Pr = 0 . 0 1 i s %f \n ” , r1 ) ;
29 printf ( ” Lth / Le a t Pr = 1 i s %f \n ” , r2 ) ;
30 printf ( ” Lth / Le a t Pr = 100 i s %f ” , r3 ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 5
6 // Heat T r a n s f e r by F o r c e d C o n v e c t i o n
7
8
9 // Example 5 . 3 ( i )
10 // Page 215
11 printf ( ” Example 5 . 3 ( i ) , Page 215 \n\n ” )
12
13 D = 0.015 ; // [m]
14 V = 1 ; // [m/ s ]
15 Tw = 90 ; // [ d e g r e e C ]
16 Tmi = 50 ; // [ d e g r e e C ]
17 Tmo = 65 ; // [ d e g r e e C ]
18
63
19 // ( i )
20
21 // From T a b l e A. 1
22 k = 0.656 ; // [W/m K ]
23 rho = 984.4 ; // [ kg /mˆ 3 ]
24 v = 0.497 * 10^ -6 ; // [mˆ2/ s ]
25 Cp = 4178 ; // [ J / kg K ]
26 Pr = 3.12 ;
27 rho_in = 988.1 ; // [ kg /mˆ 3 ]
28
29 m_dot = %pi *( D ^2) * rho_in * V /4 ; // [ kg / s ]
30
31 Re = 4* m_dot /( %pi * D * rho * v ) ;
32
33 // U s i n g eqn 5 . 3 . 2 and 4 . 6 . 4 a
34 f = 0.079*( Re ) ^ -0.25 ;
35
36 Nu = ( f /2) *( Re -1000) * Pr /[1+12.7*( f /2) ^(1/2) *(( Pr
^(2/3) ) -1) ];
37 h = Nu * k / D ; // [W/mˆ2 K ]
38
39 // From t h e e n e r g y e q u a t i o n , e x t r a c t i n g t h e v a l u e o f
L
40 L = m_dot * Cp *( Tmo - Tmi ) *[ log (( Tw - Tmi ) /( Tw - Tmo ) ) ]/[((
Tw - Tmi ) -( Tw - Tmo ) ) * h * D * %pi ]; // [m]
41
42 printf ( ” The l e n g t h o f t u b e i f t h e e x i t w a t e r
t e m p e r a t u r e i s 65 d e g r e e C = %f m\n ” ,L ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
64
5 // C h a p t e r 5
6 // Heat T r a n s f e r by F o r c e d C o n v e c t i o n
7
8
9 // Example 5 . 3 ( i )
10 // Page 215
11 printf ( ” Example 5 . 3 ( i i ) , Page 215 \n\n ” )
12
13 D = 0.015 ; // [m]
14 V = 1 ; // [m/ s ]
15 Tw = 90 ; // [ d e g r e e C ]
16 Tmi = 50 ; // [ d e g r e e C ]
17 Tmo = 65 ; // [ d e g r e e C ]
18
19 // From T a b l e A. 1
20 k = 0.656 ; // [W/m K ]
21 rho = 984.4 ; // [ kg /mˆ 3 ]
22 v = 0.497 * 10^ -6 ; // [mˆ2/ s ]
23 Cp = 4178 ; // [ J / kg K ]
24 Pr = 3.12 ;
25 rho_in = 988.1 ; // [ kg /mˆ 3 ]
26
27 m_dot = %pi *( D ^2) * rho_in * V /4 ; // [ kg / s ]
28
29 Re = 4* m_dot /( %pi * D * rho * v ) ;
30
31 // U s i n g eqn 5 . 3 . 2 and 4 . 6 . 4 a
32 f = 0.079*( Re ) ^ -0.25 ;
33
34 Nu = ( f /2) *( Re -1000) * Pr /[1+12.7*( f /2) ^(1/2) *(( Pr
^(2/3) ) -1) ];
35 h = Nu * k / D ; // [W/mˆ2 K ]
36
37 // From t h e e n e r g y e q u a t i o n , e x t r a c t i n g t h e v a l u e o f
L
38 L = m_dot * Cp *( Tmo - Tmi ) *[ log (( Tw - Tmi ) /( Tw - Tmo ) ) ]/[((
Tw - Tmi ) -( Tw - Tmo ) ) * h * D * %pi ]; // [m]
39
65
40 // ( i i )
41 printf ( ” \ n T r i a l and e r r o r method \n ” ) ;
42
43 // T r i a l 1
44 printf ( ” T r i a l 1\ n ” ) ;
45 printf ( ” Assumed v a l u e o f Tmo = 70 d e g r e e C\n ” ) ;
46 T_mo = 70 ; // [ d e g r e e C ]
47 T_b = 60 ; // [ d e g r e e C ]
48
49 k1 = 0.659 ; // [W/m K ]
50 rho1 = 983.2 ; // [ kg /mˆ 3 ]
51 v1 = 0.478 * 10^ -6 ; // [mˆ2/ s ]
52 Cp1 = 4179 ; // [ J / kg K ]
53 Pr1 = 2.98 ;
54
55 Re1 = 4* m_dot /( %pi * D * rho1 * v1 ) ;
56
57 // From B l a s i u s eqn ( 4 . 6 . 4 a ) , we g e t
58 f1 = 0.005928;
59
60 // S u b s t i t u t i n g t h i s v a l u e i n t o t h e G n i e l i n s k i Eqn
61 Nu_d = 154.97;
62 h = Nu_d * k1 / D ; // [W/mˆ2 K ]
63
64 // from eqn 5 . 3 . 3 , we g e t
65 Tmo1 = 73.4 ; // [ d e g r e e C ]
66 printf ( ” V a l u e o f Tmo o b t a i n e d = 7 3 . 4 d e g r e e C\n ” ) ;
67
68 // T r i a l 2
69 printf ( ” T r i a l 2\ n ” ) ;
70 printf ( ” Assume Tmo = 7 3 . 4 d e g r e e C\n ” ) ;
71 printf ( ” V a l u e o f Tmo o b t a i n e d = 7 3 . 6 d e g r e e C which
i s i n r e a s o n a b l y c l o s e a g r e e m e n t w i t h assumed
v a l u e . \ n”)
66
Scilab code Exa 5.4 Length of tube over which temperature rise occurs
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 5
6 // Heat T r a n s f e r by F o r c e d C o n v e c t i o n
7
8
9 // Example 5 . 4
10 // Page 219
11 printf ( ” Example 5 . 4 , Page 219 \n\n ” )
12
13 D_i = 0.05 ; // [m]
14 m = 300 ; // [ kg / min ]
15 m1 = m /60 ; // [ kg / s e c ]
16 rho = 846.7 ; // [ kg /mˆ 3 ]
17 k = 68.34 ; // [W/m K ]
18 c = 1274; // [ J / kg K ]
19 v = 0.2937*10^ -6 ; // [mˆ2/ s ]
20 Pr = 0.00468 ;
21
22 Re_D = 4* m1 /( %pi * D_i * rho * v ) ;
23
24 // Assuming b o t h t e m p e r a t u r e and v e l o c i t y p r o f i l e
are f u l l y developed over the l e n g t h o f tube
25 // u s i n g eqn 5 . 3 . 6
26 Nu_D = 6.3 + 0.0167*( Re_D ^0.85) *( Pr ^0.93) ;
27
28 h = Nu_D * k / D_i ;
29
30 // E q u a t i n g t h e h e a t
t r a n s f e r r e d through the wall of
t h e t u b e t o t h e c h a n g e o f e n t h a l p y p f sodium
31 L = 300/60*1274*(500 -400) /( h * %pi * D_i *30)
32
33 printf ( ” Length o f t u b e o v e r which t h e t e m p e r a t u r e
r i s e o c c u r s = %f m” ,L )
67
Scilab code Exa 5.5 Rate of heat transfer to the plate
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 5
6 // Heat T r a n s f e r by F o r c e d C o n v e c t i o n
7
8
9 // Example 5 . 5
10 // Page 231
11 printf ( ” Example 5 . 5 , Page 231 \n ” )
12
13 V = 15 ; // [m/ s ]
14 s =0.2 ; // [m]
15 T_m = (20+60) /2; // [ d e g r e e C ]
16 // P r o p e r t i e s a t mean temp = 40 d e g r e e C
17 v = 16.96*10^ -6; // [mˆ2/ s ]
18 rho = 1.128 ; // [ kg /mˆ 3 ]
19 k = 0.0276; // [W/m K ]
20 Pr = 0.699;
21 A = s ^2;
22 Re_L = V *0.2/ v ;
23 // T h i s i s l e s s t h a n 3 ∗ 1 0 ˆ 5 , h e n c e t h e boundary
l a y e r may be assumed t o be l a m i n a r o v e r t h e
entire length .
24 // from eqn 4 . 8 . 1 9
25
26 Cf = 1.328/( Re_L ) ^0.5
27 Fd = 2* Cf *1/2* rho * A * V ^2;
28
29 // From eqn 5 . 5 . 1 0
30 Nu_l = 0.664*( Pr ^(1/3) ) *( Re_L ^(1/2) ) ;
68
31
32 h = Nu_l * k / s ;
33 // T h e r e f o r e r a t e o f h e a t t r a n s f e r q i s
34 q = 2* A * h *(60 -20) ; // [W]
35
36 // With a t u r b u l e n t boundary l a y e r from l e a d i n g edge
, t h e d r a g c o e f f i c i e n t i s g i v e n by eqn 4 . 1 0 . 4
37 Cf1 = 0.074*( Re_L ) ^( -0.2) ;
38 Fd1 = 2* Cf1 *1/2* rho * A * V ^2; // [ N ]
39
40 // from eqn 5 . 8 . 3 w i t h C1 = 0
41 Nu_l1 = 0.0366*(0.699^(1/3) ) *( Re_L ^(0.8) ) ;
42
43 h1 = Nu_l1 * k / s ; // [W/mˆ2 K ]
44 q1 = 2* A * h1 *(60 -20) ;
45
46 printf ( ” For Laminar Boundary L a y e r \n ” ) ;
47 printf ( ” Rate o f Heat t r a n s f e r = %f W\n ” ,q ) ;
48 printf ( ” Drag f o r c e = %f N \n \n ” , Fd )
49
50 printf ( ” For T u r b u l e n t Boundary L a y e r from t h e
l e a d i n g e d g e \n ” ) ;
51 printf ( ” Rate o f Heat t r a n s f e r = %f W\n ” , q1 ) ;
52 printf ( ” Drag f o r c e = %f N\n ” , Fd1 )
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 5
6 // Heat T r a n s f e r by F o r c e d C o n v e c t i o n
7
8
69
9 // Example 5 . 6 ( i )
10 // Page 235
11 printf ( ” Example 5 . 6 ( i ) , Page 235 \n\n ” )
12
13 D = 0.075 ; // [m]
14 V = 1.2 ; // [m/ s ]
15 T_air = 20 ; // [ d e g r e e C ]
16 T_surface = 100 ; // [ d e g r e e C ]
17 T_m = ( T_air + T_surface ) /2;
18
19 v = 18.97*10^ -6 ; // [mˆ2/ s ]
20 k = 0.0290 ; // [W/m K ]
21 Pr = 0.696 ;
22
23 Re_D = V * D / v ;
24
25 Nu = 0.3 + [(0.62*( Re_D ^(1/2) ) *( Pr ^(1/3) ) )
/[(1+((0.4/ Pr ) ^(2/3) ) ) ^(1/4) ]]*([1+(( Re_D /282000)
^(5/8) ) ]^(4/5) ) ;
26
27 h = Nu * k / D ; // [W/mˆ2 K ]
28
29 flux = h *( T_surface - T_air ) ; // [W/mˆ 2 ]
30 q = flux * %pi * D *1; // [W/m]
31
32 printf ( ” Heat t r a n s f e r r a t e p e r u n i t l e n g t h = %f W/m\
n ” ,q ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 5
70
6 // Heat T r a n s f e r by F o r c e d C o n v e c t i o n
7
8
9 // Example 5 . 6 ( i i )
10 // Page 235
11 printf ( ” Example 5 . 6 ( i i ) , Page 235 \n\n ” )
12
13 D = 0.075 ; // [m]
14 V = 1.2 ; // [m/ s ]
15 T_air = 20 ; // [ d e g r e e C ]
16 T_surface = 100 ; // [ d e g r e e C ]
17 T_m = ( T_air + T_surface ) /2;
18
19 v = 18.97*10^ -6 ; // [mˆ2/ s ]
20 k = 0.0290 ; // [W/m K ]
21 Pr = 0.696 ;
22
23 Re_D = V * D / v ;
24 Nu = 0.3 + [(0.62*( Re_D ^0.5) *( Pr ^(1/3) ) ) /[(1+((0.4/
Pr ) ^(2/3) ) ) ^(1/4) ]]*[1+( Re_D /282000) ^(5/8) ]^(5/8)
;
25 h = Nu * k / D ; // [W/mˆ2 K ]
26 flux = h *( T_surface - T_air ) ; // [W/mˆ 2 ]
27
28 // ( i i ) U s i n g T r i a l and e r r o r method
29 T_avg = 1500/ flux *( T_surface - T_air ) ;
30
31 T_assumd = 130 ; // [ d e g r e e C ]
32 Tm = 75 ; // [ d e g r e e C ]
33
34 v1 = 20.56*10^ -6 ; // [mˆ2/ s ]
35 k1 = 0.0301 ; // [W/m K ]
36 Pr1 = 0.693 ;
37
38 Re_D1 = V * D / v1 ;
39
40
41 // U s i n g eqn 5 . 9 . 8
71
42 Nu1 = 33.99;
43 h = Nu1 * k1 / D ;
44 // T h e r e f o r e
45 T_diff = 1500/ h ; // [ d e g r e e C ]
46 T_avg_calc = 129.9 ; // [ d e g r e e C ]
47 printf ( ” Assumed a v e r a g e w a l l t e m p e r a t u r e = %f d e g r e e
C\n ” , T_assumd ) ;
48 printf ( ” C a l c u l a t e d a v e r a g e w a l l T e m p e r a t u r e = %f
d e g r e e C\n ” , T_avg_calc ) ;
49 printf ( ” Hence , A v e r a g e w a l l T e m p e r a t u r e = %f d e g r e e C
” , T_avg_calc ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 5
6 // Heat T r a n s f e r by F o r c e d C o n v e c t i o n
7
8
9 // Example 5 . 7 ( i )
10 // Page 241
11 printf ( ” Example 5 . 7 ( i ) , Page 241 \n \n ” ) ;
12
13 // Given d a t a
14 D = 0.0125 ; // [m]
15 ST = 1.5* D ;
16 SL = 1.5* D ;
17 V_inf = 2 ; // [m/ s ]
18
19 N = 5;
20 Tw = 70; // [ d e g r e e C ]
21 Tmi = 30; // [ d e g r e e C ]
72
22 L = 1; // [m]
23 // P r o p e r t i e s o f a i r a t 30 d e g r e e C
24 rho = 1.165 ; // [ kg /mˆ 3 ]
25 v = 16.00 *10^ -6 ; // [mˆ2/ s ]
26 Cp = 1.005 ; // [ kJ / kg K ]
27 k = 0.0267 ; // [W/m K ]
28 Pr = 0.701;
29
30 // From eqn 5 . 1 0 . 2
31 Vmax = ST /( SL - D ) * V_inf ; // [m/ s ]
32 Re = Vmax * D / v ;
33
34 // From f i g 5 . 1 5
35 f = 0.37/4;
36 // Also , t u b e a r r a n g e m e n t i s s q u a r e
37 X = 1;
38 // From eqn 5 . 1 0 . 6
39 delta_P = 4* f * N * X *( rho * Vmax ^2) /2 ; // [ N/mˆ 2 ]
40
41 printf ( ” ( i ) P r e s s u r e d r o p o f a i r a c r o s s t h e bank i s
%f N/mˆ2 \n ” , delta_P ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 5
6 // Heat T r a n s f e r by F o r c e d C o n v e c t i o n
7
8
9 // Example 5 . 7 ( i i )
10 // Page 241
11 printf ( ” Example 5 . 7 ( i i ) , Page 241 \n \n ” ) ;
73
12
13 D = 0.0125 ; // [m]
14 ST = 1.5* D ;
15 SL = 1.5* D ;
16 V_inf = 2 ; // [m/ s ]
17 N = 5;
18 Tw = 70; // [ d e g r e e C ]
19 Tmi = 30; // [ d e g r e e C ]
20 L = 1; // [m]
21
22 rho = 1.165 ; // [ kg /mˆ 3 ]
23 v = 16.00 *10^ -6 ; // [mˆ2/ s ]
24 Cp = 1.005*1000 ; // [ J / kg K ]
25 k = 0.0267 ; // [W/m K ]
26 Pr = 0.701;
27
28 // From eqn 5 . 1 0 . 2
29 Vmax = ST /( SL - D ) * V_inf ; // [m/ s ]
30 Re = Vmax * D / v ;
31
32 // From f i g 5 . 1 5
33 f = 0.37/4;
34 // Also , t u b e a r r a n g e m e n t i s s q u a r e
35 X = 1;
36 // From eqn 5 . 1 0 . 6
37 delta_P = 4* f * N * X *( rho * Vmax ^2) /2 ; // [ N/mˆ 2 ]
38
39 // At 70 d e g r e e C
40 Pr1 = 0.694 ;
41 // From t a b l e 5 . 4 and 5 . 5
42
43 C1 = 0.27;
44 m = 0.63;
45 C2 = 0.93;
46
47 // S u b s t i t u t i n g i n Eqn 5 . 1 0 . 5
48 Nu = C1 * C2 *( Re ^ m ) *( Pr ^0.36) *( Pr / Pr1 ) ^(1/4) ;
49 h = Nu * k / D ; // [W/mˆ2 K ]
74
50
51 // For 1 m l o n g t u b e
52 m_dot = rho *(10*1.5* D *1) *2; // [ kg / s ]
53
54 // S u b s t i t u t i n g m dot i n 5 . 3 . 4 and s o l v i n g , we g e t
55 function [ f ]= temp ( Tmo )
56 f (1) = h *( %pi * D * L ) *50*[( Tw - Tmi ) -( Tw - Tmo (1) ) ]/[
log (( Tw - Tmi ) /( Tw - Tmo (1) ) ) ] - m_dot * Cp *( Tmo (1) -
Tmi ) ;
57 // h ∗ ( %pi ∗D∗L ) ∗N∗ ( ( Tw−Tmi ) −(Tw−Tmo) ) / l o g [ ( Tw−Tmi
) / (Tw−Tmo) ] − m dot ∗Cp ∗ (Tmo − Tmi ) ;
58 funcprot (0) ;
59 endfunction
60
61 Tmo = 40; // I n i t i a l assumed v a l u e f o r f s o l v e
function
62 y = fsolve ( Tmo , temp ) ;
63 printf ( ”Tmo = %f \n ” ,y ) ;
64
65 printf ( ” ( i i ) E x i t t e m p e r a t u r e o f a i r = %f d e g r e e C \
n ” ,y ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 5
6 // Heat T r a n s f e r by F o r c e d C o n v e c t i o n
7
8
9 // Example 5 . 7 ( i i i )
10 // Page 241
11 printf ( ” Example 5 . 7 ( i i i ) , Page 241 \n \n ” ) ;
75
12
13 D = 0.0125 ; // [m]
14 ST = 1.5* D ;
15 SL = 1.5* D ;
16 V_inf = 2 ; // [m/ s ]
17 N = 5;
18 Tw = 70; // [ d e g r e e C ]
19 Tmi = 30; // [ d e g r e e C ]
20 L = 1; // [m]
21
22 rho = 1.165 ; // [ kg /mˆ 3 ]
23 v = 16.00 *10^ -6 ; // [mˆ2/ s ]
24 Cp = 1.005*1000 ; // [ J / kg K ]
25 k = 0.0267 ; // [W/m K ]
26 Pr = 0.701;
27
28 // From eqn 5 . 1 0 . 2
29 Vmax = ST /( SL - D ) * V_inf ; // [m/ s ]
30 Re = Vmax * D / v ;
31
32 // From f i g 5 . 1 5
33 f = 0.37/4;
34 // Also , t u b e a r r a n g e m e n t i s s q u a r e
35 X = 1;
36 // From eqn 5 . 1 0 . 6
37 delta_P = 4* f * N * X *( rho * Vmax ^2) /2 ; // [ N/mˆ 2 ]
38
39 // At 70 d e g r e e C
40 Pr1 = 0.694 ;
41 // From t a b l e 5 . 4 and 5 . 5
42
43 C1 = 0.27;
44 m = 0.63;
45 C2 = 0.93;
46
47 // S u b s t i t u t i n g i n Eqn 5 . 1 0 . 5
48 Nu = C1 * C2 *( Re ^ m ) *( Pr ^0.36) *( Pr / Pr1 ) ^(1/4) ;
49 h = Nu * k / D ; // [W/mˆ2 K ]
76
50
51 // For 1 m l o n g t u b e
52 m_dot = rho *(10*1.5* D *1) *2; // [ kg / s ]
53
54 // S u b s t i t u t i n g m dot i n 5 . 3 . 4 and s o l v i n g , we g e t
55 function [ f ]= temp ( Tmo )
56 f (1) = h *( %pi * D * L ) *50*[( Tw - Tmi ) -( Tw - Tmo (1) ) ]/[
log (( Tw - Tmi ) /( Tw - Tmo (1) ) ) ] - m_dot * Cp *( Tmo (1) -
Tmi ) ;
57 // h ∗ ( %pi ∗D∗L ) ∗N∗ ( ( Tw−Tmi ) −(Tw−Tmo) ) / l o g [ ( Tw−Tmi
) / (Tw−Tmo) ] − m dot ∗Cp ∗ (Tmo − Tmi ) ;
58 funcprot (0) ;
59 endfunction
60
61 Tmo = 40; // I n i t i a l assumed v a l u e f o r f s o l v e
function
62 y = fsolve ( Tmo , temp ) ;
63
64 // Heat t r a n s f e r r a t e q
65 q = h *( %pi * D * L ) *50*(( Tw - Tmi ) -( Tw - y ) ) /( log (( Tw - Tmi ) /(
Tw - y ) ) ) ;
66
67 printf ( ” ( i i i ) Heat t r a n s f e r r a t e p e r u n i t l e n g t h t o
a i r = %f W” ,q ) ;
77
Chapter 6
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 6
6 // Heat T r a n s f e r by N a t u r a l C o n v e c t i o n
7
8
9 // Example 6 . 1
10 // Page 258
11 printf ( ” Example 6 . 1 , Page 258 \n \n ” ) ;
12
13 H = 0.5 ; // [m]
14 T_h = 100; // [ d e g r e e C ]
15 T_l = 40; // [ d e g r e e C ]
16
17 v = 20.02*10^ -6 ; // [m/ s ]
18 Pr = 0.694;
19 k = 0.0297; // [W/m K ]
78
20
21 T = ( T_h + T_l ) /2 + 273 ; // [ K ]
22 printf ( ”Mean f i l m t e m p e r a t u r e = %f K \n ” ,T ) ;
23 B = 1/ T ;
24
25 Gr = 9.81* B *(( T_h - T_l ) * H ^3) /( v ^2) ;
26 Ra = Gr * Pr ;
27
28 // ( a )
29 // Exact a n a l y s i s − E q u a t i o n 6 . 2 . 1 7
30 disp ( ” ( a ) ” ) ;
31 printf ( ” Exact a n a l y s i s \n ” ) ;
32 Nu_a = 0.64*( Gr ^(1/4) ) *( Pr ^0.5) *((0.861+ Pr ) ^( -1/4) ) ;
33 printf ( ” Nu L = %f \n ” , Nu_a ) ;
34
35 // ( b )
36 // I n t e g r a l method − E q u a t i o n 6 . 2 . 2 9
37 disp ( ” ( b ) ” ) ;
38 printf ( ” I n t e g r a l method \n ” ) ;
39 Nu_b = 0.68*( Gr ^(1/4) ) *( Pr ^0.5) *((0.952+ Pr ) ^( -1/4) ) ;
40 printf ( ” Nu L = %f \n ” , Nu_b ) ;
41
42 // ( c )
43 // McAdams c o r r e l a t i o n − E q u a t i o n 6 . 2 . 3 0
44 disp ( ” ( c ) ” ) ;
45 printf ( ”McAdams c o r r e l a t i o n \n ” ) ;
46 Nu_c = 0.59*( Ra ) ^(1/4) ;
47 printf ( ” Nu L = %f \n ” , Nu_c ) ;
48
49 // ( d )
50 // C h u r c h i l l and Chu c o r r e l a t i o n − E q u a t i o n 6 . 2 . 3 1
51 disp ( ” ( d ) ” )
52 printf ( ” C h u r c h i l l and Chu c o r r e l a t i o n \n ” ) ;
53 Nu_d = 0.68 + 0.670*( Ra ^(1/4) ) /[1+(0.492/ Pr ) ^(9/16)
]^(4/9) ;
54 printf ( ” Nu L = %f \n ” , Nu_d ) ;
79
Scilab code Exa 6.2 Reduce the equation
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 6
6 // Heat T r a n s f e r by N a t u r a l C o n v e c t i o n
7
8
9 // Example 6 . 2
10 // Page 259
11 printf ( ” Example 6 . 2 , Page 259 \n \n ” ) ;
12
13 Tm = 150 ; // [ d e g r e e C ]
14 // From t a b l e A. 2
15 v = 28.95*10^ -6 ; // [mˆ2/ s ]
16 Pr = 0.683;
17 k = 0.0357 ; // [W/m K ]
18
19 B = 1/(273+ Tm ) ; // [ Kˆ −1]
20
21 // from eqn 6 . 2 . 3 0
22 printf ( ” E q u a t i o n 6 . 2 . 3 0 \n h = k /L ∗ 0 . 5 9 ∗ [ 9 . 8 1 ∗ B∗ (Tw−
T i n f ) ∗ ( L ˆ 3 ) ∗ 0 . 6 8 3 / ( v ˆ 2 ) ] ˆ ( 1 / 4 ) \n ” )
23 // h = k /L ∗ 0 . 5 9 ∗ [ 9 . 8 1 ∗ B∗ (Tw−T i n f ) ∗ ( L ˆ 3 ) ∗ 0 . 6 8 3 / ( v ˆ 2 )
]ˆ(1/4) ;
24 // s i m p l i f y i n g we g e t
25 // h = 1 . 3 8 ∗ [ ( Tw−T i n f ) /L ] ˆ ( 1 / 4 )
26 printf ( ” R e d u c e s t o h = 1 . 3 8 ∗ [ ( Tw−T i n f ) /L ] ˆ ( 1 / 4 ) \n ” )
27
28
29 // From eqn 6 . 2 . 3 3
30 // h∗L/ k = 0 . 1 0 ∗ [ 9 . 8 1 ∗ B∗ (Tw−T i n f ) ∗ ( L ˆ 3 ) ∗ 0 . 6 8 3 / ( v ˆ 2 )
80
]ˆ(1/3) ;
31 printf ( ” E q u a t i o n 6 . 2 . 3 3 \n h∗L/ k = 0 . 1 0 ∗ [ 9 . 8 1 ∗ B∗ (Tw−
T i n f ) ∗ ( L ˆ 3 ) ∗ 0 . 6 8 3 / ( v ˆ 2 ) ] ˆ ( 1 / 3 ) \n ” ) ;
32 // s i m p l i f y i n g
33 // h = 0 . 9 5 ∗ ( Tw−T i n f ) ˆ 1 / 3
34 printf ( ” R e d u c e s t o h = 0 . 9 5 ∗ ( Tw−T i n f ) ˆ 1 / 3 \n ” ) ;
35
36 printf ( ” where h i s e x p r e s s e d i n W/mˆ2 K, (Tw−T i n f )
i n C and L i n m e t r e s \n ” ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 6
6 // Heat T r a n s f e r by N a t u r a l C o n v e c t i o n
7
8
9 // Example 6 . 3
10 // Page 260
11 printf ( ” Example 6 . 3 , Page 260 \n \n ” ) ;
12
13 s = 0.2 ; // [m]
14 d = 0.005 ; // [m]
15 rho = 7900 ; // [ kg /mˆ 3 ]
16 Cp = 460 ; // [ J / kg K ]
17
18 T_air = 20 ; // [ C ]
19 // For 430 C t o 330 C
20 T_avg = 380 ; // [ C ]
21 Tm = ( T_avg + T_air ) /2 ; // [ C ]
22
23
81
24 v = 34.85*10^ -6 ; // [mˆ2/ s ]
25 Pr = 0.680 ;
26 k = 0.0393 ; // [W/m K ]
27
28 Re = 9.81*1/(273+ Tm ) *( T_avg - T_air ) *( s ^3) /( v ^2) * Pr ;
29
30 // From eqn 6 . 2 . 3 1
31 Nu = 0.68 + 0.670*( Re ^(1/4) ) /[1+(0.492/ Pr ) ^(4/9)
]^(4/9) ;
32
33 h = Nu * k / s ; // [W/mˆ2 K ]
34 t1 = rho * s * s * d * Cp /(( s ^2) *2* h ) * log ((430 - T_air ) /(330 -
T_air ) ) ; // [ s ]
35 printf ( ” Time r e q u i r e d f o r t h e p l a t e t o c o o l from 430
C t o 330 C i s %f s \n ” , t1 ) ;
36
37 // f o r 330 t o 230
38 h2 = 7.348 ; // [W/mˆ2 K ]
39 t2 = rho * s * s * d * Cp /(( s ^2) *2* h2 ) * log ((330 - T_air ) /(230 -
T_air ) ) ; // [ s ]
40 printf ( ” Time r e q u i r e d f o r t h e p l a t e t o c o o l from 330
C t o 230 C i s %f s \n ” , t2 ) ;
41
42 // f o r 230 t o 130
43 h3 = 6.780; // [W/mˆ2 K ]
44 t3 = rho * s * s * d * Cp /(( s ^2) *2* h3 ) * log ((230 - T_air ) /(130 -
T_air ) ) ; // [ s ]
45 printf ( ” Time r e q u i r e d f o r t h e p l a t e t o c o o l from 230
C t o 130 C i s %f s \n ” , t3 ) ;
46
47 // T o t a l t i m e
48
49 time = t1 + t2 + t3 ;
50 minute = time /60;
51 printf ( ” Hence , t i m e r e q u i r e d f o r t h e p l a t e t o c o o l
from 430 C t o 130 C \n = %f s \n = %f min ” , time ,
minute ) ;
82
Scilab code Exa 6.4 True air temperature
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 6
6 // Heat T r a n s f e r by N a t u r a l C o n v e c t i o n
7
8
9 // Example 6 . 4
10 // Page 264
11 printf ( ” Example 6 . 4 , Page 264 \n \n ” ) ;
12
13 D = 0.006 ; // [m]
14 e = 0.1 ;
15 Ti = 800 ; // [ C ]
16 Ta = 1000 ; // [ C ]
17 // Rate a t which h e a t g a i n e d = n e t r a d i a n t h e a t ,
g i v e s h ∗ ( Ta−800) = 1 3 0 6 . 0 ; // [W/mˆ 2 ]
18
19 // U s i n g t r i a l and e r r o r method
20 // T r i a l 1
21 printf ( ” T r i a l 1 \n ” ) ;
22 // L e t Ta = 1 0 0 0 d e g r e e C
23 printf ( ” L e t Ta = 1 0 0 0 0 C \n ” ) ;
24
25 Tm = ( Ta + Ti ) /2;
26 // From t a b l e A. 2
27 v = 155.1*10^ -6 ; // [mˆ2/ s ]
28 k = 0.0763 ; // [W/m K ]
29 Pr = 0.717 ;
30
31 Gr = 9.81*1/1173*(200* D ^3) /( v ^2) ;
83
32 Ra = Gr * Pr ;
33
34 // From eqn 6 . 3 . 2
35 Nu = 0.36 + 0.518*( Ra ^(1/4) ) /[1+(0.559/ Pr ) ^(9/16)
]^(4/9) ;
36 h = Nu * k / D ;
37 x = h *( Ta - Ti ) ; // [W/mˆ 2 ]
38 printf ( ” V a l u e o f h ( Ta−800) = %f W/mˆ 2 , which i s much
l a r g e r t h a n t h e r e q u i r e d v a l u e o f 1 3 0 6 W/mˆ2 \n ”
,x ) ;
39
40 // T r i a l 2
41 printf ( ” \ n T r i a l 2 \n ” ) ;
42 // L e t Ta = 900
43 printf ( ” L e t Ta = 900 C \n ” ) ;
44 Ra2 = 6.42 ;
45 Nu2 = 0.9841 ;
46 h2 = 12.15 ;
47 x2 = h2 *(900 -800) ;
48 printf ( ” V a l u e o f h ( Ta−800) = %f W/mˆ 2 , which i s a
l i t t l e l e s s t h a n t h e r e q u i r e d v a l u e o f 1 3 0 6 W/mˆ2
\n ” , x2 ) ;
49
50 // T r i a l 3
51 printf ( ” \ n T r i a l 3 \n ” ) ;
52 // L e t Ta = 910
53 printf ( ” L e t Ta = 910 C \n ” ) ;
54 Ra3 = 6.93 ;
55 Nu3 = 0.9963 ;
56 h3 = 12.33 ;
57 x3 = h3 *(910 -800) ;
58 printf ( ” V a l u e o f h ( Ta−800) = %f W/mˆ2 \ n T h i s v a l u e
i s l i t t l e more t h a n t h e r e q u i r e d v a l u e o f 1 3 0 6 W/
mˆ2 \n ” , x3 ) ;
59 // I n t e r p o l a t i o n
60 T = 900 + (910 -900) *(1306 - x2 ) /( x3 - x2 ) ;
61 printf ( ” \ nThe c o r r e c t v a l u e o f Ta o b t a i n e d by
i n t e r p o l a t i o n i s %f C” ,T ) ;
84
Scilab code Exa 6.5 Rate of heat flow by natural convection
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 6
6 // Heat T r a n s f e r by N a t u r a l C o n v e c t i o n
7
8
9 // Example 6 . 5
10 // Page 269
11 printf ( ” Example 6 . 5 , Page 269 \n \n ” ) ;
12
13 T_p = 75 ; // T e m p e r a t u r e o f a b s o r b e r p l a t e , d e g r e e
C
14 T_c = 55 ; // T e m p e r a t u r e o f g l a s s c o v e r , d e g r e e C
15 L = 0.025 ; // [m]
16
17 H = 2 ; // [m]
18 Y = 70 ; // d e g r e e
19
20 a = 19/180* %pi ; // [ R a d i a n s ]
21
22 r = H/L ;
23
24 T_avg = ( T_p + T_c ) /2+273 ; // [ K ]
25 // P r o p e r t i e s a t 65 d e g r e e C
26 k = 0.0294 ; // [W/m K ]
27 v = 19.50*10^ -6 ; // [mˆ2/ s ]
28 Pr = 0.695 ;
29
30 Ra = 9.81*(1/ T_avg ) *( T_p - T_c ) *( L ^3) /( v ^2) * Pr * cos ( a ) ;
31
85
32 // From eqn 6 . 4 . 3
33 Nu = 0.229*( Ra ) ^0.252;
34
35 h = Nu * k / L ; // [W/mˆ2 K ]
36
37 Rate = h *2*1*( T_p - T_c ) ; // [W]
38
39 printf ( ” Heat t r a n s f e r r a t e = %f W” , Rate ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 6
6 // Heat T r a n s f e r by N a t u r a l C o n v e c t i o n
7
8
9 // Example 6 . 6
10 // Page 270
11 printf ( ” Example 6 . 6 , Page 270 \n \n ” ) ;
12
13 T_air = 30 ; // [ C ]
14 D = 0.04 ; // [m]
15 T_s = 70 ; // s u r f a c e t e m p e r a t u r e , [ C ]
16 V = 0.3 ; // [m/ s ]
17
18 Tm = ( T_air + T_s ) /2 ; // [ C ]
19 // P r o p e r t i e s a t Tm
20 v = 17.95*10^ -6 ; // [mˆ2/ s ]
21 Pr = 0.698 ;
22 k = 0.0283 ; // [W/m K ]
23
24 Gr = 9.81*1/323*( T_s - T_air ) *( D ^3) / v ^2;
86
25 Re = V * D / v ;
26 X = Gr / Re ^2 ;
27 printf ( ” S i n c e Gr/Re ˆ2 = %f i s > 0 . 2 , we have a
combined c o n v e c t i o n s i t u a t i o n . \n\n ” ,X ) ;
28
29 // From Eqn 5 . 9 . 8
30 Nu_forced = 0.3 + 0.62*( Re ^0.5) *( Pr ^(1/3) ) /[[1+(0.4/
Pr ) ^(2/3) ]^(1/4) ]*[1+( Re /282000) ^(5/8) ]^(4/5) ;
31
32 // S u b s t i t u t i n g i n Eqn 6 . 5 . 1
33 Nu = Nu_forced *[1+6.275*( X ) ^(7/4) ]^(1/7) ;
34 h = Nu *( k / D ) ;
35 printf ( ” The A v e r a g e h e a t t r a n s f e r c o e f f i c i e n t = %f W
/mˆ2 K” ,h ) ;
87
Chapter 7
Heat Exchangers
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 7
6 // Heat E x c h a n g e r s
7
8
9 // Example 7 . 1
10 // Page 285
11 printf ( ” Example 7 . 1 , Page 285 \n \n ” ) ;
12
13 h = 2000 ; // [W/mˆ2 K ]
14 // From T a b l e 7 . 1
15 U_f = 0.0001 ; // f o u l i n g f a c t o r , mˆ2K/W
16 h_f = 1/[1/ h + U_f ];
17 printf ( ” Heat t r a n s f e r c o e f f i c i e n t i n c l u d i n g t h e
e f f e c t o f f o u l u n g = %f W/mˆ2 K \n ” , h_f ) ;
18
19 p = (h - h_f ) / h *100;
20 printf ( ” P e r c e n t a g e r e d u c t i o n = %f \n ” ,p ) ;
88
Scilab code Exa 7.2 Area of heat exchanger
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 7
6 // Heat E x c h a n g e r s
7
8
9 // Example 7 . 2
10 // Page 294
11 printf ( ” Example 7 . 2 , Page 294 \n \n ” ) ;
12
13 m = 1000 ; // [ kg / h ]
14 Thi = 50 ; // [C]
15 The = 40 ; // [C]
16 Tci = 35 ; // [C]
17 Tce = 40 ; // [C]
18 U = 1000 ; // OHTC, W/mˆ2 K
19
20 // U s i n g Eqn 7 . 5 . 2 5
21 q = m /3600*4174*( Thi - The ) ; // [W]
22
23 delta_T = (( Thi - Tce ) -( The - Tci ) ) / log (( Thi - Tce ) /( The -
Tci ) ) ; // [ C ]
24 printf ( ” d e l t a T = %f \n\n ” , delta_T ) ;
25
26 // T1 = Th and T2 = Tc
27 R = ( Thi - The ) /( Tce - Tci ) ;
28 S = ( Tce - Tci ) /( Thi - Tci ) ;
29 // From f i g 7 . 1 5 ,
30 F =0.91 ;
31
89
32 printf ( ” Taking T1 = Th and T2 = Tc \n ” )
33 printf ( ”R = %f , S = %f \n ” ,R , S ) ;
34 printf ( ” Hence , F = %f \n \n ” ,F ) ;
35
36 // A l t e r n a t i v e l y , t a k i n g T1 = Tc and T2 = Th
37 R = ( Tci - Tce ) /( The - Thi ) ;
38 S = ( The - Thi ) /( Tci - Thi ) ;
39
40 // Again from f i g 7 . 1 5 ,
41 F =0.91 ;
42
43 printf ( ” Taking T1 = Tc and T2 = Th \n ” )
44 printf ( ”R = %f , S = %f \n ” ,R , S ) ;
45 printf ( ” Hence , F = %f \n ” ,F ) ;
46
47 A = q /( U * F * delta_T ) ;
48 printf ( ” \ nArea = %f mˆ2 ” ,A ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 7
6 // Heat E x c h a n g e r s
7
8
9 // Example 7 . 3
10 // Page 295
11 printf ( ” Example 7 . 3 , Page 295 \n \n ” ) ;
12
13 // B e c a u s e o f c h a n g e o f p h a s e , Thi = The
14 Thi = 100 ; // [ C ] , S a t u r a t e d steam
15 The = 100 ; // [ C ] , Condensed steam
90
16 Tci = 30 ; // [ C ] , C o o l i n g w a t e r i n l e t
17 Tce = 70 ; // [ C ] , c o o l i n g w a t e r o u t l e t
18
19 R = ( Thi - The ) /( Tce - Tci ) ;
20 S = ( Tce - Tci ) /( Thi - Tci ) ;
21
22 // From f i g 7 . 1 6
23 F = 1;
24
25 // For c o u n t e r f l o w a r r a n g e m e n t
26 Tm_counter = (( Thi - Tce ) -( The - Tci ) ) / log (( Thi - Tce ) /(
The - Tci ) ) ; // [ C ]
27 // T h e r e f o r e
28 Tm = F * Tm_counter ;
29 printf ( ”Mean T e m p e r a a t u r e D i f f e r e n c e = %f C” , Tm )
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 7
6 // Heat E x c h a n g e r s
7
8
9 // Example 7 . 4 ( a )
10 // Page 302
11 printf ( ” Example 7 . 4 ( a ) , Page 302 \n \n ” ) ;
12
13 // ( a )
14 printf ( ” ( a ) \n ” ) ;
15 // U s i n g Mean T e m p e r a t u r e D i f f e r e n c e a p p r o a c h
16 m_hot = 10 ; // [ kg / min ]
17 m_cold = 25 ; // [ kg / min ]
91
18 hh = 1600 ; // [W/mˆ2 K ] , Heat t r a n s f e r coefficient
on h o t s i d e
19 hc = 1600 ; // [W/mˆ2 K ] , Heat t r a n s f e r coefficient
on c o l d s i d e
20
21 Thi = 70 ; // [ C ]
22 Tci = 25 ; // [ C ]
23 The = 50 ; // [ C ]
24
25 // Heat T r a n s f e r Rate , q
26 q = m_hot /60*4179*( Thi - The ) ; // [W]
27
28 // Heat g a i n e d by c o l d w a t e r = h e a t l o s t by t h e h o t
water
29 Tce = 25 + q *1/( m_cold /60*4174) ; // [ C ]
30
31 // U s i n g e q u a t i o n 7 . 5 . 1 3
32 Tm = (( Thi - Tci ) -( The - Tce ) ) / log (( Thi - Tci ) /( The - Tce ) ) ;
// [ C ]
33 printf ( ”Mean T e m p e r a t u r e D i f f e r e n c e = %f C \n ” , Tm ) ;
34
35 U = 1/(1/ hh + 1/ hc ) ; // [W/mˆ2 K ]
36 A = q /( U * Tm ) ; // Area , [mˆ 2 ]
37 printf ( ” Area o f Heat E x c h a n g e r = %f mˆ2 \n ” ,A ) ;
Scilab code Exa 7.4.b Exit temperature of hot and cold streams
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 7
6 // Heat E x c h a n g e r s
7
8
92
9 // Example 7 . 4 ( b )
10 // Page 302
11 printf ( ” Example 7 . 4 ( b ) , Page 302 \n \n ” ) ;
12
13 // U s i n g Mean T e m p e r a t u r e D i f f e r e n c e a p p r o a c h
14 m_hot = 10 ; // [ kg / min ]
15 m_cold = 25 ; // [ kg / min ]
16 hh = 1600 ; // [W/mˆ2 K ] , Heat t r a n s f e r c o e f f i c i e n t
on h o t s i d e
17 hc = 1600 ; // [W/mˆ2 K ] , Heat t r a n s f e r coefficient
on c o l d s i d e
18
19 Thi = 70 ; // [ C ]
20 Tci = 25 ; // [ C ]
21 The = 50 ; // [ C ]
22
23 // Heat T r a n s f e r Rate , q
24 q = m_hot /60*4179*( Thi - The ) ; // [W]
25
26 // Heat g a i n e d by c o l d w a t e r = h e a t l o s t by t h e h o t
water
27 Tce = 25 + q *1/( m_cold /60*4174) ; // [ C ]
28
29 // U s i n g e q u a t i o n 7 . 5 . 1 3
30 Tm = (( Thi - Tci ) -( The - Tce ) ) / log (( Thi - Tci ) /( The - Tce ) ) ;
// [ C ]
31 U = 1/(1/ hh + 1/ hc ) ; // [W/mˆ2 K ]
32 A = q /( U * Tm ) ; // Area , [mˆ 2 ]
33
34 m_hot = 20 ; // [ kg / min ]
35 // Flow r a t e on h o t s i d e i . e . ’ hh ’ i s d o u b l e d
36 hh = 1600*2^0.8 ; // [W/mˆ2 K ]
37 U = 1/(1/ hh + 1/ hc ) ; // [W/mˆ2 K ]
38 m_hC_ph = m_hot /60*4179 ; // [W/K ]
39 m_cC_pc = m_cold /60*4174 ; // [W/K ]
40 // T h e r e f o r e
41 C = m_hC_ph / m_cC_pc ;
42 NTU = U * A / m_hC_ph ;
93
43 printf ( ”NTU = %f \n ” , NTU ) ;
44
45 // From e q u a t i o n 7 . 6 . 8
46 e = [1 - exp ( -(1+ C ) * NTU ) ]/(1+ C ) ;
47
48 // T h e r e f o r e ( Thi − The ) / ( Thi − T c i ) = e , we g e t
49 The = Thi - e *( Thi - Tci ) ; // [ C ]
50
51 // E q u a t i n g t h e h e a t l o s t by w a t e r t o h e a t g a i n e d by
c o l d w a t e r , we g e t
52 Tce = Tci + [ m_hC_ph *( Thi - The ) ]/ m_cC_pc ;
53 printf ( ” E x i t t e m p e r a t u r e o f c o l d and h o t s t r e a m a r e
%f C and %f C r e s p e c t i v e l y . ” ,Tce , The ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 7
6 // Heat E x c h a n g e r s
7
8
9 // Example 7 . 5
10 // Page 304
11 printf ( ” Example 7 . 5 , Page 304 \n \n ” ) ;
12
13 mc = 2000 ; // [ kg / h ]
14 Tce = 40 ; // [ C ]
15 Tci = 15 ; // [ C ]
16 Thi = 80 ; // [ C ]
17 U = 50 ; // OHTC, [W/mˆ2 K ]
18 A = 10 ; // Area , [mˆ 2 ]
19
94
20 // U s i n g e f f e c t i v e NTU method
21 // Assuming m c ∗ C pc = (m∗ C p ) s
22 NTU = U * A /( mc *1005/3600) ;
23 e = ( Tce - Tci ) /( Thi - Tci ) ;
24 // From f i g 7 . 2 3 , no v a l u e o f C i s found
c o r r e s p o n d i n g to the above v al u es , hence
a s s u m p t i o n was wrong .
25 // So , m h∗ C ph must be e q u a l t o (m∗ C p ) s ,
p r o c e e d i n g by t r a i l and e r r o r method
26
27
28 printf ( ”m h ( kg / h NTU C e
T he (C) T he (C) ( Heat B a l a n c e ) ” ) ;
29
30 mh = rand (1:5) ;
31 NTU = rand (1:5) ;
32 The = rand (1:5) ;
33 The2 = rand (1:5) ;
34
35 mh (1) = 200
36 NTU (1) = U * A /( mh (1) *1.161) ;
37 // C o r r e s p o n d i n g V a l u e s o f C and e from f i g 7 . 2 3
38 C = .416;
39 e = .78;
40 // From E q u a t i o n 7 . 6 . 2 Page 297
41 The (1) = Thi - e *( Thi - Tci )
42 // From Heat B a l a n c e
43 The2 (1) = Thi - mc *1005/3600*( Tce - Tci ) /( mh (1)
*1.161) ;
44 printf ( ” \n\n %i %. 3 f %. 3 f %. 3 f
%. 2 f %. 2 f ” , mh (1) , NTU (1) ,C ,e , The (1) , The2 (1) )
;
45
46 mh (2) = 250
47 NTU (2) = U * A /( mh (2) *1.161) ;
48 // C o r r e s p o n d i n g V a l u e s o f C and e from f i g 7 . 2 3
49 C = .520;
50 e = .69;
95
51 // From E q u a t i o n 7 . 6 . 2 Page 297
52 The (2) = Thi - e *( Thi - Tci )
53 // From Heat B a l a n c e
54 The2 (2) = Thi - mc *1005/3600*( Tce - Tci ) /( mh (2)
*1.161) ;
55 printf ( ” \n\n %i %. 3 f %. 3 f %. 3 f
%. 2 f %. 2 f ” , mh (2) , NTU (2) ,C ,e , The (2) , The2 (2) )
;
56
57 mh (3) = 300
58 NTU (3) = U * A /( mh (3) *1.161) ;
59 // C o r r e s p o n d i n g V a l u e s o f C and e from f i g 7 . 2 3
60 C = .624;
61 e = .625;
62 // From E q u a t i o n 7 . 6 . 2 Page 297
63 The (3) = Thi - e *( Thi - Tci )
64 // From Heat B a l a n c e
65 The2 (3) = Thi - mc *1005/3600*( Tce - Tci ) /( mh (3)
*1.161) ;
66 printf ( ” \n\n %i %. 3 f %. 3 f %. 3 f
%. 2 f %. 2 f ” , mh (3) , NTU (3) ,C ,e , The (3) , The2 (3) )
;
67
68 mh (4) = 350
69 NTU (4) = U * A /( mh (4) *1.161) ;
70 // C o r r e s p o n d i n g V a l u e s o f C and e from f i g 7 . 2 3
71 C = .728;
72 e = .57;
73 // From E q u a t i o n 7 . 6 . 2 Page 297
74 The (4) = Thi - e *( Thi - Tci )
75 // From Heat B a l a n c e
76 The2 (4) = Thi - mc *1005/3600*( Tce - Tci ) /( mh (4)
*1.161) ;
77 printf ( ” \n\n %i %. 3 f %. 3 f %. 3 f
%. 2 f %. 2 f ” , mh (4) , NTU (4) ,C ,e , The (4) , The2 (4) )
;
78
79 mh (5) = 400
96
80 NTU (5) = U * A /( mh (5) *1.161) ;
81 // C o r r e s p o n d i n g V a l u e s o f C and e from f i g 7 . 2 3
82 C = .832;
83 e = .51;
84 // From E q u a t i o n 7 . 6 . 2 Page 297
85 The (5) = Thi - e *( Thi - Tci )
86 // From Heat B a l a n c e
87 The2 (5) = Thi - mc *1005/3600*( Tce - Tci ) /( mh (5)
*1.161) ;
88 printf ( ” \n\n %i %. 3 f %. 3 f %. 3 f
%. 2 f %. 2 f ” , mh (5) , NTU (5) ,C ,e , The (5) , The2 (5) )
;
89
90 clf () ;
91 plot ( mh , The , mh , The2 ,[295 295 200] ,[0 39.2 39.2])
92 xtitle ( ’ The v s mh ’ , ’mh ( kg / h r ) ’ , ’ The (C) ’ ) ;
93 printf ( ” \n\n From t h e p l o t , v a l u e o f mh = 295 kg / h r
and c o r r e s p o n d i n g l y The = 3 9 . 2 C” )
97
Chapter 8
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 8
6 // C o n d e n s a t i o n and B o i l i n g
7
8
9 // Example 8 . 1
10 // Page 318
11 printf ( ” Example 8 . 1 , Page 318 \n \n ” ) ;
12 Ts = 80 ; // [ C ]
13 Tw = 70 ; // [ C ]
14 L = 1 ; // [m]
15 g = 9.8 ; // [m/ s ˆ 2 ]
16
17 // Assuming c o n d e n s a t e f i l m i s l a m i n a r and Re < 30
18 Tm = ( Ts + Tw ) /2 ;
19 // From t a b l e A. 1
20 rho = 978.8 ; // [ kg /mˆ 3 ]
21 k = 0.672 ; // [W/m K ]
98
22 u = 381 *10^ -6 ; // [ kg /m s ]
23 v = u / rho ;
24 // At 80 C ,
25 lambda = 2309 ; // [ kJ / kg ]
26 // S u b s t i t u t i n g i n eqn 8 . 3 . 9 , we g e t
27 h = 0.943*[( lambda *1000*( rho ^2) * g *( k ^3) ) /(( Ts - Tw ) * u *
L ) ]^(1/4) ; // [W/mˆ2 K ]
28
29 rate = h * L *( Ts - Tw ) /( lambda *1000) ; // [ kg /m s ]
30 Re = 4* rate / u ;
31 printf ( ” Assuming c o n d e n s a t e f i l m i s l a m i n a r and Re <
30 \n ” ) ;
32 printf ( ” h = %f W/mˆ2 K\n ” ,h ) ;
33 printf ( ” Re L = %f \n ” , Re ) ;
34 printf ( ” I n i t i a l a s s u m p t i o n was wrong , Now
c o n s i d e r i n g t h e e f f e c t o f r i p p l e s , we g e t \n ” ) ;
35
36 // S u b s t i t u t i n g h = Re ∗ ( lambda ∗ 1 0 0 0 ) ∗u / ( 4 ∗ L ∗ ( Ts−Tw) )
, i n eqn 8 . 3 . 1 2
37 Re = [[[4* L *( Ts - Tw ) * k /( lambda *1000* u ) *( g /( v ^2) )
^(1/3) ]+5.2]/1.08]^(1/1.22) ;
38 // From eqn 8 . 3 . 1 2
39 h = [ Re /(1.08*( Re ^1.22) -5.2) ]* k *(( g / v ^2) ^(1/3) ) ; //
[W/mˆ2 K ]
40 m = h * L *10/( lambda *1000) ; // r a t e o f c o n d e n s a t i o n ,
[ kg /m s ]
41
42 printf ( ”Re = %f \n ” , Re ) ;
43 printf ( ” Heat T r a n s f e r C o f f i c i e n t = %f W/mˆ2 K \n ” ,h )
;
44 printf ( ” Rate o f c o n d e n s a t i o n = %f kg /m s ” ,m ) ;
Scilab code Exa 8.2 Average heat transfer coefficient and film Reynolds
number
99
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 8
6 // C o n d e n s a t i o n and B o i l i n g
7
8
9 // Example 8 . 2
10 // Page 321
11 printf ( ” Example 8 . 2 , Page 321 \n \n ” ) ;
12
13 Ts = 262 ; // [ K ]
14 D = 0.022 ; // [m]
15 Tw = 258 ; // [ K ]
16
17 Tm = ( Ts + Tw ) /2;
18 // P r o p e r t i e s a t Tm
19 rho = 1324 ; // [ kg /mˆ 3 ]
20 k = 0.1008 ; // [W/m K ]
21 v = 1.90*10^ -7 // [mˆ2/ s ] ;
22 lambda = 215.1*10^3 ; // [ J / kg ]
23 g = 9.81 ; // [m/ s ˆ 2 ]
24 u = v * rho ; // V i s c o s i t y
25
26 // From eqn 8 . 4 . 1
27 h = 0.725*[ lambda *( rho ^2) * g *( k ^3) /(( Ts - Tw ) * u * D )
]^(1/4) ;
28
29 rate = h * %pi * D *( Ts - Tw ) / lambda ; // [ kg / s m]
30 Re = 4* rate / u ;
31
32 printf ( ” Heat t r a n s f e r c o e f f i c i e n t = %f W/mˆ2 K\n ” ,h )
;
33 printf ( ” C o n d e n s a t i o n r a t e p e r u n i t l e n g t h = %f kg / s
m \n ” , rate ) ;
34 printf ( ” Film R e y n o l d s number = %f \n ” , Re ) ;
100
Scilab code Exa 8.3 Length of the tube
1 clear ;
2 clc ;
3
4 // A TeTwtbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 8
6 // C o n d e n s a t i o n and B o i l i n g
7
8
9 // ETwample 8 . 3
10 // Page 322
11 printf ( ” Example 8 . 3 , Page 322 \n \n ” ) ;
12
13 m = 25/60 ; // [ kg / s e c ]
14 ID = 0.025 ; // [m]
15 OD = 0.029 ; // [m]
16 Tci = 30 ; // [ C ]
17 Tce = 70 ; // [ C ]
18 g = 9.8 ; // [m/ s ˆ 2 ]
19
20 Ts = 100 ; // [ C ]
21 // Assuming 5 . 3 . 2 i s v a l i d , p r o p e r t i e s a t 50 C
22 // P r o p e r t i e s a t Tm
23 rho = 988.1 ; // [ kg /mˆ 3 ]
24 k = 0.648 ; // [W/m K ]
25 v = 0.556*10^ -6 // [mˆ2/ s ] ;
26 Pr = 3.54 ;
27 Re = 4* m /( %pi * ID * rho * v ) ;
28 // From eqn 4 . 6 . 4 a
29 f = 0.005635;
30 // From eqn 5 . 3 . 2
31 Nu = 198.39 ;
32 h = Nu * k / ID ;
101
33
34 // Assuming a v e r a g e w a l l t e m p e r a t u r e = 90 C
35 Tw = 90 ; // [ C ]
36 Tm = ( Tw + Ts ) /2;
37 // P r o p e r t i e s a t Tm
38 // P r o p e r t i e s a t Tm
39 rho = 961.9 ; // [ kg /mˆ 3 ]
40 k = 0.682 ; // [W/m K ]
41 u = 298.6*10^ -6 ; // [ kg /m s ]
42 lambda = 2257*10^3 ; // [ J / kg ]
43
44 h = 0.725*[ lambda *( rho ^2) * g *( k ^3) /(( Ts - Tw ) * u * OD )
]^(1/4) ;
45 // E q u a t i n g t h e h e a t f l o w from t h e c o n d e n s i n g steam
t o t h e t u b e w a l l , t o t h e h e a t f l o w from t h e t u b e
wall to the f l o w i n g water .
46 // S o l v i n g t h e s i m p l i f i e d e q u a t i o n
47 function [ f ] = temp ( Tw )
48 f =(100 - Tw ) ^(3/4) -8.3096/[ log (( Tw - Tci ) /( Tw - Tce ) )
];
49 funcprot (0) ;
50 endfunction
51
52 T = fsolve ( Tw , temp ) ;
53 printf ( ” T e m p e r a t u r e o b t a i n e d from t r i a l and e r r o r =
%f C \n ” ,T ) ;
54
55 // T h e r e f o r e
56 hc = 21338.77/(100 - T ) ^(1/4) ; // [W/mˆ2 K ]
57 printf ( ” h c = %f W/mˆ2 K \n ” , hc ) ;
58
59 // Now , e q u a t i n g t h e h e a t f l o w i n g from t h e
c o n d e n s i n g steam t o t h e t u b e w a l l t o t h e h e a t
g a i n e d by t h e water , we have
60 function [ g ] = lngth ( l )
61 g = hc *( %pi * OD * l ) *(100 - T ) -m *4174*( Tce - Tci ) ;
62 funcprot (0) ;
63 endfunction
102
64
65 l = 0; // ( i n i t i a l
g u e s s , assumed v a l u e f o r f s o l v e
function )
66 L = fsolve (l , lngth ) ;
67 printf ( ” \ nLength o f t h e t u b e = %f m \n ” ,L ) ;
1 clear ;
2 clc ;
3
4 // P r o p e r t i e s a t (Tw+Ts ) /2 = 1 0 0 . 5 d e g r e e c e l s i u s
5 deltaT1 = 1; // i n d e g r e e c e l s i u s
6 p1 = 7.55 e -4; // [ Kˆ( −1) p1 i s c o e f f i c i e n t
of cubical expansion
7 v1 = 0.294 e -6; // [mˆ2/ s e c ] viscosity
at 100.5 degree c e l s i u s
8 k1 = 0.683; // [W/m−k ] t h e r m a l
conductivity
9 Pr1 = 1.74; // P r a n d t l number
10 g = 9.81; // a c c e l e r a t i o n due t o
gravity
11 L = 0.14 e -2; // d i a m e t e r i n m e t e r s
12 // P r o p e r t i e s a t (Tw+Ts ) /2 = 1 0 2 . 5
13 deltaT2 = 5; // i n d e g r e e c e l s i u s
14 p2 = 7.66 e -4; // [ Kˆ( −1) p1 i s c o e f f i c i e n t
of cubical expansion
15 v2 = 0.289 e -6; // [mˆ2/ s e c ] v i s c o s i t y at
102.5 degree c e l s i u s
16 k2 = 0.684; // [W/m−k ] t h e r m a l
conductivity
17 Pr2 = 1.71; // P r a n d t l number
18 // P r o p e r t i e s a t (Tw+Ts ) /2 =105
19 deltaT3 = 10; // i n d e g r e e c e l s i u s
20 p3 = 7.80 e -4; // [ Kˆ( −1) p1 i s c o e f f i c i e n t
103
of cubical expansion
21 v3 = 0.284 e -6; // [mˆ2/ s e c ] v i s c o s i t y at
105 d e g r e e c e l s i u s
22 k3 = 0.684; // [W/m−k ] t h e r m a l
conductivity
23 Pr3 = 1.68; // P r a n d t l number
24
25 function [ Ra ]= Rayleigh_no (p , deltaT ,v , Pr )
26 Ra = [( p * g * deltaT * L ^3) /( v ^2) ]* Pr ;
27 funcprot (0) ;
28 endfunction
29
30 function [ q ] = flux (k , deltaT , Rai , v )
31 q =( k / L ) *( deltaT ) *{0.36+(0.518* Rai ^(1/4) )
/[1+(0.559/ v ) ^(9/16) ]^(4/9) };
32 funcprot (0) ;
33 endfunction
34
35 Ra = Rayleigh_no ( p1 , deltaT1 , v1 , Pr1 ) ;
36 q1 = flux ( k1 , deltaT1 , Ra , Pr1 ) ;
37 printf ( ” \n q /A = %. 1 f W/mˆ2 a t (Tw−Ts ) =1” , q1 ) ;
38 Ra = Rayleigh_no ( p2 , deltaT2 , v2 , Pr2 ) ;
39 q2 = flux ( k2 , deltaT2 , Ra , Pr2 ) ;
40 printf ( ” \n q /A = %. 1 f W/mˆ2 a t (Tw−Ts ) =5” , q2 ) ;
41 Ra = Rayleigh_no ( p3 , deltaT3 , v3 , Pr3 ) ;
42 q3 = flux ( k3 , deltaT3 , Ra , Pr3 ) ;
43 printf ( ” \n q /A = %. 1 f W/mˆ2 a t (Tw−Ts ) =10” , q3 ) ;
44
45 // At 100 d e g r e e c e l s i u s
46 Cpl = 4.220; // [ kJ / kg ]
47 lamda = 2257; // [ kJ / kg ]
48 ul = 282.4 e -6; // v i s c o s i t y i s i n kg /m−s e c
49 sigma = 589 e -4; // S u r f a c e t e n s i o n i s i n N/m
50 pl = 958.4; // d e n s i t y i n kg /mˆ3
51 pv =0.598; // d e n s i t y o f v a p o u r i n kg /mˆ3
52 deltap = pl - pv ;
53 Prl = 1.75; // P r a n d t l no . o f l i q u i d
54 Ksf = 0.013;
104
55 function [ q1 ]= heat_flux ( deltaT )
56 q1 =141.32* deltaT ^3;
57 funcprot (0) ;
58 endfunction
59
60 printf ( ” \n q /A a t d e l t a T = 5 d e g r e e c e l s i u s = %. 1 f W
/mˆ2 ” , heat_flux (5) ) ;
61 printf ( ” \ nq /A a t d e l t a T = 10 d e g r e e c e l s i u s = %. 1 f W
/mˆ2 ” , heat_flux (10) ) ;
62 printf ( ” \n q /A a t d e l t a T =20 d e g r e e c e l s i u s = %. 1 f W
/mˆ2 ” , heat_flux (20) ) ;
63 // q i = [ h e a t f l u x ( 5 ) , h e a t f l u x ( 1 0 ) , h e a t f l u x ( 2 0 ) ] ;
64 q = [ q1 q2 q3 ];
65 i =1;
66 while i <=10
67 T(i)=i;
68 ql ( i ) = heat_flux ( i ) ;
69 i = i +1;
70 end
71 plot2d ([1 5 10] , q ) ;
72 plot2d (T , ql ) ;
73 xtitle ( ” B o i l i n g c u r v e ” ,” (Tw − Ts ) d e g r e e c e l s i u s ” ,”
Heat f l u x , ( q /A)W/mˆ2 ” ) ;
74 L1 = ( L /2) *[ g *( pl - pv ) / sigma ]^(1/2) ;
75 printf ( ” \n Peak h e a t f l u x L = %. 3 f ” , L1 ) ;
76 f_L = 0.89+2.27* exp ( -3.44* L1 ^(0.5) ) ;
77 printf ( ” \n f ( l ) = %. 4 f ” , f_L ) ;
78 q2 = f_L *{( %pi /24) * lamda *10^(3) * pv ^(0.5) *[ sigma * g *(
pl - pv ) ]^(0.25) };
79 printf ( ” \n q /A = %. 3 e W/mˆ2 ” , q2 ) ;
80
81 Tn = poly ([0] , ’ Tn ’ ) ;
82 Tn1 = roots (141.32* Tn ^3 - q2 ) ;
83 printf ( ” \n Tw−Ts = %. 1 f d e g r e e c e l s i u s ” , Tn1 (3) ) ;
84
85
86
87 printf ( ” \n\n Minimum h e a t f l u x ” ) ;
105
88 q3 = 0.09* lamda *10^3* pv *[ sigma * g *( pl - pv ) /( pl + pv ) ^(2)
]^(0.25) ;
89 printf ( ” \n q /A = %d W/mˆ2 ” , q3 ) ;
90 printf ( ” \n\n S t a b l e f i l m b o i l i n g ” ) ;
91 Ts1 = 140; // s u r f a c e t e m p e r a t u r e i n d e g r e e
celsius
92 Ts2 = 200; // s u r f a c e t e m p e r a t u r e i n d e g r e e
celsius
93 Ts3 = 600; // s u r f a c e t e m p e r a t u r e i n d e g r e e
celsius
94 Twm1 = (140+100) /2; // Mean f i l m t e m p e r a t u r e
95 // p r o p e r t i e s o f steam a t 120 d e g r e e c e l s i u s and
1 . 0 1 3 bar
96 kv = 0.02558; // t h e r m a l c o n d u c t i v i t y i n W/mK
97 pv1 = 0.5654; // v a p o r d e n s i t y i n kg /mˆ3
98 uv =13.185*10^( -6) ; // v i s c o s i t y o f v a p o u r i n kg /m
sec
99 lamda1 = (2716.1 -419.1) *10^(3) ; // L a t e n t h e a t o f
f u s i o n i n J / kg
100 hc = 0.62*[( kv ^3) * pv *( pl - pv ) * g * lamda1 /( L * uv
*(140 -100) ) ]^(0.25) ;
101 printf ( ” \n hc = %. 2 f W/mˆ2 ” , hc ) ;
102 qrad = 5.67*10^( -8) *(413^4 - 373^4) /[(1/0.9) +1 -1];
103 printf ( ” \n q /A due t o r a d i a t i o n = %. 2 f W/mˆ2 ” , qrad ) ;
104 hr = qrad /(413 -373) ;
105 printf ( ” \n h r = %. 2 f W/mˆ2 K ” , hr ) ;
106
107 printf ( ” \n S i n c e hr<hc ” ) ;
108 printf ( ” \n The t o t a l h e a t t r a n s f e r c o e f f i c i e n t ” ) ;
109 h = hc + 0.75* hr ;
110 printf ( ” h = %. 2 f W/mˆ2 K” ,h ) ;
111 printf ( ” \n T o t a l h e a t f l u x = %. 3 f W/mˆ2 K” ,h
*(140 -100) ) ;
112
113 hc_200 = 0.62*[( kv ^3) * pv *( pl - pv ) * g * lamda1 /( L * uv
*(200 -100) ) ]^(0.25) ;
114 qrad1 = 5.67*10^( -8) *(473^4 - 373^4) /[(1/0.9) +1 -1];
115 hr_200 = qrad1 /(200 -100) ;
106
116 printf ( ” \n\n hc = %. 2 f W/mˆ2 ” , hc_200 ) ;
117 printf ( ” \n h r = %. 2 f W/mˆ2 K” , hr_200 ) ;
118 printf ( ” \n q /A due t o r a d i a t i o n = %. 2 f W/mˆ2 ” , qrad1 )
;
119 h_200 = hc_200 +0.75* hr_200 ;
120 printf ( ” \n T o t a l h e a t f l u x = %d W/mˆ2 ” , h_200 *100) ;
121 hc_600 = 0.62*[( kv ^3) * pv *( pl - pv ) * g * lamda1 /( L * uv
*(600 -100) ) ]^(0.25) ;
122 qrad2 = 5.67*10^( -8) *(873^4 - 373^4) /[(1/0.9) +1 -1];
123 hr_600 = qrad1 /(600 -100)
124 printf ( ” \n\n hc = %. 2 f W/mˆ2 ” , hc_600 ) ;
125 printf ( ” \n h r = %. 2 f W/mˆ2 K” , hr_600 ) ;
126 printf ( ” \n q /A due t o r a d i a t i o n = %. 2 f W/mˆ2 ” , qrad2 )
;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 8
6 // C o n d e n s a t i o n and B o i l i n g
7
8
9 // Example 8 . 5
10 // Page 337
11 printf ( ” Example 8 . 5 , Page 337 \n \n ” ) ;
12
13 D = 0.02 ; // [m]
14 l = 0.15 ; // [m]
15 T = 500+273 ; // [ K ]
16 Tc = -196+273 ; // [ K ]
17 e = 0.4;
18 s = 5.670*10^ -8;
107
19 // Film b o i l i n g w i l l o c c u r , h e n c e eqn 8 . 7 . 9 i s
applicable
20 Tm = ( T + Tc ) /2;
21
22 // P r o p e r t i e s
23 k = 0.0349 ; // [W/m K ]
24 rho = 0.80 ; // [ kg /mˆ 3 ]
25 u = 23*10^ -6 ; // [ kg /m s ]
26
27 Cp_avg = 1.048 ; // [ kJ / kg J ]
28 rho_liq = 800 ; // [ kg /mˆ 3 ]
29 latent = 201*10^3 ; // [ J / kg ]
30
31 lambda = [ latent + Cp_avg *( Tm - Tc ) *1000]; // [ J / kg ]
32 h_c = 0.62*[(( k ^3) * rho *799.2*9.81* lambda ) /( D * u *( T - Tc
) ) ]^(1/4) ; // [W/mˆ2 K ]
33
34 // Taking t h e e m i s s i v i t y o f l i q u i d s u r f a c e t o be
u n i t y and u s i n g e q u a t i o n 3 . 9 . 1 , t h e e x c h a n g e o f
radiant heat f l u x
35 flux = s *( T ^4 - Tc ^4) /(1/ e +1/1 -1) ; // [W/mˆ 2 ]
36 h_r = flux /( T - Tc ) ;
37
38 // S i n c e h r < h c , t o t a l h e a t t r a n s f e r coefficient
i s d e t e r m i n e d from eqn 8 . 7 . 1 1
39 h = h_c +3/4* h_r ; // [W/mˆ2 K ]
40
41 flux_i = h *( T - Tc ) ;
42 Rate = flux_i * %pi * D * l ; // [W]
43
44 printf ( ” I n i t i a l h e a t f l u x = %f W/mˆ2 \n ” , flux_i ) ;
45 printf ( ” I n i t i a l h e a t t r a n s f e r r a t e = %f W” , Rate ) ;
108
Chapter 9
Mass Transfer
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 9
6 // Mass T r a n s f e r
7
8
9 // Example 9 . 1
10 // Page 349
11 printf ( ” Example 9 . 1 , Page 349 \n \n ” ) ;
12
13 w_a = 0.76 ;
14 w_b = 0.24 ;
15 m_a = 28 ; // [ kg / kg mole ]
16 m_b = 32 ; // [ kg / kg mole ]
17
18 x_a = ( w_a / m_a ) /( w_a / m_a + w_b / m_b ) ;
19 x_b = ( w_b / m_b ) /( w_a / m_a + w_b / m_b ) ;
20 printf ( ” The m o l a r f r a c t i o n s a r e g i v e n by \n ” ) ;
21 printf ( ” x a = %f\n ” , x_a ) ;
109
22 printf ( ” x b = %f ” , x_b ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 9
6 // Mass T r a n s f e r
7
8
9 // Example 9 . 2
10 // Page 350
11 printf ( ” Example 9 . 2 , Page 350 \n \n ” ) ;
12
13 // From T a b l e 9 . 1 a t 1 atm and 25 C
14 Dab = 0.62*10^ -5 ; // [mˆ2/ s ]
15 // T h e r e f o r e a t 2 atm and 50 C
16 Dab2 = Dab *(1/2) *(323/298) ^1.5 ;
17 printf ( ”Dab a t 2 atm & 50 C = %e mˆ2/ s ” , Dab2 ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 9
6 // Mass T r a n s f e r
7
8
9 // Example 9 . 3 ( a )
110
10 // Page 352
11 printf ( ” Example 9 . 3 ( a ) , Page 352 \n \n ” ) ;
12
13 t = 0.04 ; // [m]
14 A = 2 ; // [mˆ 2 ]
15 rho1 = 0.10 ;
16 rho2 = 0.01 ;
17 D_400 = 1.6*10^ -11 ; // a t 400K [mˆ2/ s ]
18
19 // Mass D i f f u s i o n i n s o l i d s o l u t i o n , a s s u m i n g F i c k s
law i s v a l i d & s t e a d y s t a t e and one d i m e n s i o n a l
diffusion
20
21 // S u b t i t u t i n g t h e v a l u e s i n eqn 9 . 3 . 3 , At 400 K
22
23 m_400 = A * D_400 *( rho1 - rho2 ) / t ; // [ kg / s ]
24 printf ( ” Rate o f d i f f u s i o n o f Hydrogen a t 400 K = %e
kg / s \n ” , m_400 ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 9
6 // Mass T r a n s f e r
7
8
9 // Example 9 . 3 ( b )
10 // Page 352
11 printf ( ” Example 9 . 3 ( b ) , Page 352 \n \n ” ) ;
12
13 t = 0.04 ; // [m]
14 A = 2 ; // [mˆ 2 ]
111
15 rho1 = 0.10 ;
16 rho2 = 0.01 ;
17 D_1200 = 3.5*10^ -8 ; // a t 1 2 0 0 k [mˆ2/ s ]
18
19 // Mass D i f f u s i o n i n s o l i d s o l u t i o n , a s s u m i n g F i c k s
law i s v a l i d & s t e a d y s t a t e and one d i m e n s i o n a l
diffusion
20
21 // At 1 2 0 0 K
22 // From eqn 9 . 3 . 3
23
24 m_1200 = A * D_1200 *( rho1 - rho2 ) / t ;
25 printf ( ” ( b ) Rate o f d i f f u s i o n o f Hydrogen a t 1 2 0 0 K
= %e kg / s \n ” , m_1200 ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 9
6 // Mass T r a n s f e r
7
8
9 // Example 9 . 4 ( a )
10 // Page 356
11 printf ( ” Example 9 . 4 ( a ) , Page 356 \n \n ” ) ;
12
13 L = 1 ; // [m]
14 D = 0.005 ; // [m]
15 Pa1 = 1 ; // [ atm ]
16 Pa2 = 0 ;
17 R = 8314 ;
18 T = 298 ; // [ K ]
112
19
20 // Assuming E q u i m o l a l c o u n t e r d i f f u s i o n
21 // From T a b l e 9 . 1
22 Dab = 2.80*10^ -5 ; // [mˆ2/ s ]
23 // S u b s t i t u i n g i n eqn 9 . 4 . 1 2
24 Na = -[ Dab /( R * T ) *( Pa2 - Pa1 ) *(1.014*10^5) / L ]*( %pi *( D
/2) ^2) ;
25 R_NH3 = Na *17 ; // [ kg / s ]
26
27 printf ( ”Na = −Nb = %e ( kg mole ) /mˆ2 s \n ” , Na ) ;
28 printf ( ” Rate a t which ammonia i s l o s t t h r o u g h t h e
t u b e = %e kg / s \n ” , R_NH3 ) ;
Scilab code Exa 9.4.b Rate at which air enters the tank
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 9
6 // Mass T r a n s f e r
7
8
9 // Example 9 . 4 ( b )
10 // Page 356
11 printf ( ” Example 9 . 4 ( b ) , Page 356 \n \n ” ) ;
12
13 L = 1 ; // [m]
14 D = 0.005 ; // [m]
15 Pa1 = 1 ; // [ atm ]
16 Pa2 = 0 ;
17 R = 8314 ;
18 T = 298 ; // [ K ]
19
20 // S i n c e t h e t a n k i s l a r g e and t h e p r e s s u r e and
113
t e m p e r a t u r e a t t h e two e n d s o f t h e same t u b e a r e
same , we a r e a s s u m i n g E q u i m o l a l c o u n t e r d i f f u s i o n
21 // From T a b l e 9 . 1
22 Dab = 2.80*10^ -5 ; // [mˆ2/ s ]
23 // S u b s t i t u i n g i n eqn 9 . 4 . 1 2
24 Na = -[ Dab /( R * T ) *( Pa2 - Pa1 ) *(1.014*10^5) / L ]*( %pi *( D
/2) ^2) ;
25
26 // S i n c e e q u i m o l a l c o u n t e r d i f f u s i o n i s t a k i n g p l a c e
27 Nb = - Na ;
28 // t h e r e f o r e r a t e a t which a i r e n t e r s t h e t a n k
29 R_air = abs ( Nb ) *29 ; // [ kg / s ]
30
31 printf ( ” Rate a t which a i r e n t e r s t h e t a n k = %e kg / s ”
, R_air ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 9
6 // Mass T r a n s f e r
7
8
9 // Example 9 . 5
10 // Page 359
11 printf ( ” Example 9 . 5 , Page 359 \n \n ” ) ;
12
13 // E v a p o r a t i o n o f water , one d i m e n s i o n a l
14 T_w = 20+273 ; // [ K ]
15 D = 0.04 ; // [m]
16 h = 0.20 ; // [m]
17 h_w = 0.03 ; // [m]
114
18
19 P = 1.014*10^5; // [ Pa ]
20 R = 8314 ; // [ J / kg mole K ]
21 P_sat = 0.02339 ; // [ b a r ]
22 x_a1 = P_sat /1.014 ; // mole f r a c t i o n a t l i q −vap
interface
23 x_a2 = 0 ; // mole f r a c t i o n a t open t o p
24 c = P /( R * T_w ) ;
25 // From T a b l e 9 . 2
26 Dab = 2.422*10^ -5 ; // [mˆ2/ s ]
27
28 // S u b s t i t u t i n g a b o v e v a l u e s i n eqn 9 . 4 . 1 8
29 flux = 0.041626* Dab /0.17* log ((1 -0) /(1 - x_a1 ) ) ; // [ kg
mole /mˆ2 s ]
30 rate = flux *18*( %pi /4) *( D ^2) ;
31
32 printf ( ” Rate o f e v a p o r a t i o n o f w a t e r = %e kg / s ” , rate
);
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 9
6 // Mass T r a n s f e r
7
8
9 // Example 9 . 6
10 // Page 364
11 printf ( ” Example 9 . 6 , Page 364 \n \n ” ) ;
12
13 l = 1; // l e n g t h , [m]
14 w = 0.25; // width , [m]
115
15 T = 293 ; // Temperature , [K ]
16 rho_infinity = 0; // [ kg /mˆ 3 ]
17 R = 8314; // [ J / kg K ]
18
19 // From T a b l e A. 2
20 v = 15.06*10^ -6; // [mˆ2/ s ]
21 // From T a b l e 9 . 2
22 Dab = 2.4224*10^ -5; // [mˆ2/ s ]
23 Re = 2.5/ v ;
24 Sc = v / Dab ;
25 // S i n c e Re > 3 ∗ 1 0 ˆ 5 , we may assume l a m i n a r boundary
layer
26 Sh = 0.664* Sc ^(1/3) * Re ^(1/2) ; // Sherwood number
27 h = Sh * Dab ;
28
29 p_aw = 2339; // S a t u r a t i o n p r e s s u r e o f w a t e r a t 20
d e g r e e C . [ N/mˆ 2 ]
30 rho_aw = p_aw /( R /18* T ) ; // [ kg /mˆ 3 ]
31 rho_a_inf = 0 ; // s i n c e a i r i n t h e f r e e s t r e a m i s
dry
32 m_h = h *(2* l * w ) *( rho_aw - rho_infinity ) ;
33 printf ( ” Rate o f e v a p o r a t i o n from p l a t e = %e kg / s ” ,
m_h ) ;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 9
6 // Mass T r a n s f e r
7
8
9 // Example 9 . 7 ( a )
116
10 // Page 366
11 printf ( ” Example 9 . 7 ( a ) , Page 366 \n \n ” ) ;
12
13 D = 0.04 ; // [m]
14 V = 1.9 ; // [m/ s ]
15
16 // ( a ) C o l b u r n a n o l o g y and G n i e l i n s k i e q u a t i o n
17 // P r o p e r t i e s o f a i r a t 27 d e g r e e C
18 v = 15.718*10^ -6 ; // [mˆ2/ s ]
19 rho = 1.177 ; // [ kg /mˆ 3 ]
20 Pr = 0.7015 ;
21 Cp = 1005 ; // [ J / kg K ]
22 k = 0.02646 ; // [W/m K ]
23 // From T a b l e 9 . 2
24 Dab = 2.54 * 10^ -5 ; // [mˆ2/ s ]
25 Sc = v / Dab ;
26 Re = V * D / v ;
27 // The f l o w i s t u r b u l e n t and eqn 9 . 6 . 5 may be
applied
28 // l e t r = h /h m
29 r = rho * Cp *(( Sc / Pr ) ^(2/3) ) ;
30 // From B l a s i u s e q u a t i o n 4 . 6 . 4 a
31 f = 0.079* Re ^( -0.25) ;
32 // S u b s t i t u t i n g t h i s v a l u e i n t o G n i e l i n s k i e q u a t i o n
5.3.2
33 Nu = [( f /2) *( Re -1000) * Pr ]/[1+12.7*(( f /2) ^(1/2) ) *(( Pr
^(2/3) ) -1) ];
34 h = Nu * k / D ;
35 h_m = h / r ; // [m/ s ]
36
37 printf ( ”h m u s i n g C o l b u r n a n o l o g y and G n i e l i n s k i
e q u a t i o n = %f \n ” , h_m ) ;
117
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 9
6 // Mass T r a n s f e r
7
8
9 // Example 9 . 7 ( b )
10 // Page 366
11 printf ( ” Example 9 . 7 ( b ) , Page 366 \n \n ” ) ;
12
13 D = 0.04 ; // [m]
14 V = 1.9 ; // [m/ s ]
15
16 // ( b ) mess t r a n s f e r c o r r e l a t i o n e q u i v a l e n t t o t h e
G l e i l i n s k i equation
17
18 // P r o p e r t i e s o f a i r a t 27 d e g r e e C
19 v = 15.718*10^ -6 ; // [mˆ2/ s ]
20 rho = 1.177 ; // [ kg /mˆ 3 ]
21 Pr = 0.7015 ;
22 Cp = 1005 ; // [ J / kg K ]
23 k = 0.02646 ; // [W/m K ]
24 // From T a b l e 9 . 2
25 Dab = 2.54 * 10^ -5 ; // [mˆ2/ s ]
26 Sc = v / Dab ;
27 Re = V * D / v ;
28
29 // From B l a s i u s e q u a t i o n 4 . 6 . 4 a
30 f = 0.079* Re ^( -0.25) ;
31
32 // S u b s t i t u t i n g i n eqn 9 . 6 . 7
33 Sh_D = [( f /2) *( Re -1000) * Sc ]/[1+12.7*(( f /2) ) *(( Sc
^(2/3) ) -1) ];
34 h_m1 = Sh_D * Dab / D ;
35
36 printf ( ” ( b ) h m = %f \n ” , h_m1 ) ;
118
Scilab code Exa 9.7.c To show mass flux of water vapour is small
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 9
6 // Mass T r a n s f e r
7
8
9 // Example 9 . 7 ( c )
10 // Page 366
11 printf ( ” Example 9 . 7 ( c ) , Page 366 \n \n ” ) ;
12
13 D = 0.04 ; // [m]
14 V = 1.9 ; // [m/ s ]
15
16 // ( c ) To show t h a t mass f l u x o f w a t e r i s v e r y s m a l l
compared t o t h e mass f l u x o f a i r f l o w i n g i n t h e
pipe
17 // P r o p e r t i e s o f a i r a t 27 d e g r e e C
18 v = 15.718*10^ -6 ; // [mˆ2/ s ]
19 rho = 1.177 ; // [ kg /mˆ 3 ]
20 Pr = 0.7015 ;
21 Cp = 1005 ; // [ J / kg K ]
22 k = 0.02646 ; // [W/m K ]
23 // From T a b l e 9 . 2
24 Dab = 2.54 * 10^ -5 ; // [mˆ2/ s ]
25 Sc = v / Dab ;
26 Re = V * D / v ;
27 // The f l o w i s t u r b u l e n t and eqn 9 . 6 . 5 may be
applied
28 // l e t r = h /h m
29 r = rho * Cp *(( Sc / Pr ) ^(2/3) ) ;
119
30 // From B l a s i u s e q u a t i o n 4 . 6 . 4 a
31 f = 0.079* Re ^( -0.25) ;
32
33 // From steam t a b l e
34 rho_aw = 1/38.77 ; // [ kg /mˆ 3 ]
35 // l e t X = ( m a /A) max
36 X = f * rho_aw ; // [ kg /mˆ2 s ]
37
38 // l e t Y = mass f l u x o f a i r i n p i p e = (m/A)
39 Y = rho * V ; // [ kg /mˆ2 s ]
40 ratio = X / Y ;
41 percent = ratio *100;
42
43 printf ( ” ( c ) ( m a /A) max / ( m a /A) = %f p e r c e n t Thus ,
mass f l u x o f w a t e r i s v e r y s m a l l compared t o t h e
mass f l u x o f a i r f l o w i n g i n t h e p i p e . ” , percent )
;
1 clear ;
2 clc ;
3
4 // A Textbook on HEAT TRANSFER by S P SUKHATME
5 // C h a p t e r 9
6 // Mass T r a n s f e r
7
8
9 // Example 9 . 8
10 // Page 369
11 printf ( ” Example 9 . 8 , Page 369 \n \n ” ) ;
12
13 V = 0.5 ; // [m/ s ]
14 T_h = 30 ; // [ C ]
15 T_c = 26 ; // [ C ]
120
16 Tm = ( T_h + T_c ) /2;
17 // From t a b l e A. 2
18 rho = 1.173 ; // [ kg /mˆ 3 ]
19 Cp = 1005 ; // [ J / kg K ]
20 k = 0.02654 ; // [W/m K ]
21
22 alpha = k /( rho * Cp ) ; // [mˆ2/ s ]
23
24 // From T a b l e 9 . 2 a t 301 K
25 Dab = 2.5584*10^ -5 ; // [mˆ2/ s ]
26 lambda = 2439.2*10^3 ; // [ J / kg ]
27
28 // S u b s t i t u t i n g i n e q u a t i o n 9 . 7 . 5
29 // l e t d i f f e r e n c e = rho aw −r h o a i n f i n i t y
30 difference = rho * Cp *(( alpha / Dab ) ^(2/3) ) *( T_h - T_c ) /
lambda ;
31
32 // From steam t a b l e
33 Psat = 3363;
34 rho_aw = Psat /(8314/18*299) ;
35 rho_inf = rho_aw - difference ;
36 x = rho_inf / rho ; // mole f r a c t i o n o f water vapour i n
a i r stream
37
38 PP = rho_inf *8314/18*303; // P a r t i a l pressure of
water vapour i n a i r stream
39 // From steam t a b l e p a r t i a l p r e s s u r e o f w a t e r v a p o u r
a t 30 C
40 PP_30 = 4246 ; // [ N/mˆ 2 ]
41
42 rel_H = PP / PP_30 ;
43 percent = rel_H *100;
44
45 printf ( ” R e l a t i v e h u m i d i t y = %f i . e . %f p e r c e n t ” ,
rel_H , percent ) ;
121