1617 QS015 - 1 Solution
1617 QS015 - 1 Solution
Matriculation Programme
Examination
Semester I
Session 2016/2017
(𝑝+𝑞𝑖)
1. Solve for 𝑝 and 𝑞 where 𝑝 ≠ 𝑞, such that = (3 + √−16 − 𝑖 3 ).
3𝑖
SOLUTION
(𝑝 + 𝑞𝑖)
= (3 + √−16 − 𝑖 3 )
3𝑖
𝑝 + 𝑞𝑖 = (3 + √−16 − 𝑖 3 )(3𝑖 )
𝑝 + 𝑞𝑖 = (3 + √16√−1 − 𝑖 3 )(3𝑖 )
𝑝 + 𝑞𝑖 = (3 + 4𝑖 − 𝑖 3 )(3𝑖 )
𝑝 + 𝑞𝑖 = 9𝑖 + 12𝑖 2 − 3𝑖 4
𝑝 + 𝑞𝑖 = 9𝑖 + 12(−1) − 3(1)
𝑝 + 𝑞𝑖 = 9𝑖 − 15
𝑝 + 𝑞𝑖 = −15 + 9𝑖
𝒑 = −𝟏𝟓, 𝒒 = 𝟗
SOLUTION
32𝑥−1 = 4(3𝑥 ) − 9
1
(3𝑥 )2 ( ) = 4(3𝑥 ) − 9
3
1
( ) (3𝑥 )2 = 4(3𝑥 ) − 9
3
(3𝑥 )2 = 12(3𝑥 ) − 27
𝐿𝑒𝑡 𝑦 = 3𝑥
(𝑦)2 = 12(𝑦) − 27
𝑦 2 − 12𝑦 + 27 = 0
(𝑦 − 3)(𝑦 − 9) = 0
𝑦=3 𝑦=9
3𝑥 = 3 3𝑥 = 9
𝑥=1 𝑥=2
3. The seventh term of a geometric series is 16, the fifth term is 8 and the sum of
the first ten terms is positive. Find the first term and the common ratio. Hence,
show that 𝑆12 = 126(√2 + 1).
SOLUTION
Geometric series
𝑇7 = 𝑎𝑟 6 = 16 …… (1)
𝑇5 = 𝑎𝑟 4 = 8 …… (2)
(1) ÷ (2)
𝑎𝑟 6 16
=
𝑎𝑟 4 8
𝑟2 = 2
𝑟 = ±√2
𝑊ℎ𝑒𝑛 𝑟 = ±√2
4
𝑎(±√2) = 8
4𝑎 = 8
𝑎=2
𝒂(𝒓𝒏 − 𝟏)
𝑮𝒆𝒐𝒎𝒆𝒕𝒓𝒊𝒄 𝒔𝒆𝒓𝒊𝒆𝒔 𝑺𝒏 =
𝒓−𝟏
𝒂(𝒓𝟏𝟎 − 𝟏)
𝑺𝟏𝟎 =
𝒓−𝟏
𝑊ℎ𝑒𝑛 𝑎 = 2; 𝑟 = √2
10
2 [(√2) − 1]
𝑆10 =
√2 − 1
2[32 − 1]
=
√2 − 1
62
=
√2 − 1
= 149.68
𝑊ℎ𝑒𝑛 𝑎 = 2; 𝑟 = −√2
10
2 [(−√2) − 1]
𝑆10 =
−√2 − 1
2[32 − 1]
=
−√2 − 1
62
=
−√2 − 1
= −25.68
12
2 [(√2) − 1]
𝑆12 =
√2 − 1
2[64 − 1]
=
√2 − 1
126
=
√2 − 1
126 √2 + 1
= 𝑥
√2 − 1 √2 + 1
126(√2 + 1)
=
2 + √2 − √2 − 1
126(√2 + 1)
=
1
= 126(√2 + 1)
SOLUTION
(𝐴 + 𝐵)2 = 𝐴2 + 2𝐴𝐵 + 𝐵2
(𝐴 + 𝐵)(𝐴 + 𝐵) = 𝐴2 + 2𝐴𝐵 + 𝐵2
𝐴2 + 𝐴𝐵 + 𝐵𝐴 + 𝐵2 = 𝐴2 + 2𝐴𝐵 + 𝐵2
𝐴𝐵 + 𝐵𝐴 = 2𝐴𝐵
𝐵𝐴 = 2𝐴𝐵 − 𝐴𝐵
𝐵𝐴 = 𝐴𝐵
𝐼𝑓 𝐴𝐵 = 𝐵𝐴 𝑡ℎ𝑒𝑛 𝐵−1 = 𝐴
∴ 𝐵 = 𝐴−1
1 2
𝐴 =[ ]
9 −1
1 −1 −2
𝐵 = 𝐴−1 = [ ]
(1)(−1) − (2)(9) −9 1
1 −1 −2
= [ ]
−19 −9 1
1 −1 −2
= [ ]
−19 −9 1
1 2
= [19 19]
9 1
19 19
1
𝑥 4
5. (a) Obtain the expansion for (1 − 4) in ascending powers of x up to the term 𝑥 3 .
1
𝑥 4
State the interval for x such that the expansion (1 − 4) is valid. Hence, obtain
1
the simplest form of the expansion (16 − 4𝑥)4 .
1
4 𝑥 4 4
(b) Write √12 in the form of 𝐾 [(1 − ) ]. Hence, approximate √12 correct to
4
SOLUTION
1 1 1 1 1 1 1
𝑥 4 ( ) 𝑥 1 ( )( −1) 𝑥 2 ( )( −1)( −2) 𝑥 3
a) (1 − ) =1+ 4
(− ) + 4 4
(− ) + 4 4 4
(− ) + ⋯
4 1! 4 2! 4 3! 4
1 3 1 3 7
1 𝑥 ( ) (− ) 𝑥 2 ( ) (− ) (− ) 𝑥3
4 4 4 4 4
= 1 + ( ) (− ) + ( )+ (− ) + ⋯
4 4 2𝑥1 16 3𝑥2𝑥1 64
𝑥 3 𝑥2 21 𝑥 3
=1− − ( )− ( )+⋯
16 32 16 384 64
1 3 2 7
=1− 𝑥− 𝑥 − 𝑥3 + ⋯
16 512 8192
𝟏
𝒙 𝟒
The interval for x such that the expansion (𝟏 − 𝟒
) is valid
𝑥
| |<1
4
𝑥
−1 < <1
4
−4 < 𝑥 < 4
𝟏
The simplest form of the expansion (𝟏𝟔 − 𝟒𝒙)𝟒
1
1 4𝑥 4
(16 − 4𝑥 )4 = [16 (1 − )]
16
1
1 𝑥 4
= 164 (1 − )
4
1
𝑥 4
= 2 (1 − )
4
1 3 2 7
= 2 [1 − 𝑥− 𝑥 − 𝑥3 + ⋯ ]
16 512 8192
1 3 2 7
=2− 𝑥− 𝑥 − 𝑥3 + ⋯
8 256 4096
𝟏
𝟒 𝒙 𝟒
b) √𝟏𝟐 in the form of 𝑲 [(𝟏 − ) ]
𝟒
4
1
√12 = 124
1
= (16 − 4)4
1
4 4
= [16 (1 − )]
16
1
1 1 4
= 164 (1 − )
4
1
𝑥 4 1 3 2 7
1 Compare 2 (1 − ) = 2 − 𝑥 − 𝑥 − 𝑥3
1 4 4 8 256 4096
= 2 (1 − ) +⋯
4
1 3 7
= 2 − (1) − (1)2 − (1)3 + ⋯
8 256 4096
≈ 1.862
𝑥 2 +1
6. Given 𝑓 (𝑥) = , 𝑥 ≥ 0.
5
1
(a) Determine 𝑓 −1 (𝑥). Hence, if 𝑓(𝑔(𝑥)) = (𝑒 2(3𝑥−1) + 1), show that 𝑔(𝑥) =
5
3𝑥−1
𝑒
(b) Evaluate 𝑔(𝑓(2)) correct to three decimal places.
(c) Assume that the domain for 𝑔(𝑥) is 𝑥 ≥ 0, determine 𝑔−1 (𝑥) and state its
domain and range.
SOLUTION
𝑥 2+1
a) 𝑓 (𝑥) = 5
,𝑥≥0
Method I Method II
𝑥2 + 1 𝑥2 + 1
𝑓 (𝑥) = 𝑦=
5 5
𝑓[𝑓 −1 (𝑥)] = 𝑥 5𝑦 = 𝑥 2 + 1
[𝑓 −1 (𝑥)]2 + 1 𝑥 2 = 5𝑦 − 1
=𝑥
5
𝑥 = √5𝑦 − 1
[𝑓 −1 (𝑥)]2 + 1 = 5𝑥
𝑓 −1 (𝑥) = √5𝑥 − 1
[𝑓 −1 (𝑥)]2 = 5𝑥 − 1
𝑓 −1 (𝑥) = √5𝑥 − 1
1
𝑓(𝑔(𝑥)) = (𝑒 2(3𝑥−1) + 1)
5
[𝑔(𝑥)]2 + 1 1 2(3𝑥−1)
= (𝑒 + 1)
5 5
[𝑔(𝑥)]2 + 1 = 𝑒 2(3𝑥−1) + 1
[𝑔(𝑥)]2 = 𝑒 2(3𝑥−1)
1
𝑔(𝑥) = [𝑒 2(3𝑥−1) ]2
𝑔(𝑥) = 𝑒 3𝑥−1
b) Evaluate 𝑔(𝑓(2))
22 + 1
𝑓 (2) =
5
=1
𝑔(𝑓(2)) = 𝑔(1)
= 𝑒 3(1)−1
= 𝑒2
c) 𝑔(𝑥) = 𝑒 3𝑥−1
Method I Method II
𝑒 3[𝑔
−1 (𝑥)]−1
=𝑥 ln 𝑦 = ln 𝑒 3𝑥−1
ln 𝑒 3[𝑔
−1 (𝑥)]−1
= ln 𝑥 ln 𝑦 = 3𝑥 − 1
3[𝑔−1 (𝑥)] − 1 = ln 𝑥 3𝑥 = ln 𝑦 + 1
ln 𝑦 + 1
3[𝑔−1 (𝑥)] = ln 𝑥 + 1 𝑥=
3
ln 𝑥 + 1
𝑔−1 (𝑥) = ln 𝑥 + 1
3 𝑔−1 (𝑥) =
3
𝑔(𝑥) = 𝑒 3𝑥−1 ; 𝑥 ≥ 0
𝑦 ≥ 𝑒 −1
1
𝑦≥
𝑒
1
𝐷𝑔−1(𝑥) : 𝑥 ≥ 𝑒 𝑅𝑔−1 (𝑥) : 𝑦 ≥ 0
SOLUTION
a) √7 − 3√5 = √𝑥 − √𝑦
2
2
[√7 − 3√5] = [√𝑥 − √𝑦]
2 2
7 − 3√5 = √𝑥 + √𝑦 − 2√𝑥 √𝑦
7 − 3√5 = 𝑥 + 𝑦 − 2√𝑥𝑦
𝑥+𝑦 = 7
2√𝑥𝑦 = 3√5
√4𝑥𝑦 = √9𝑥5
4𝑥 (7 − 𝑥) = 45
28𝑥 − 4𝑥 2 = 45
4𝑥 2 − 28𝑥 + 45 = 0
(2𝑥 − 9)(2𝑥 − 5) = 0
9 5
𝑥=2 𝑥=2
9 5
𝑦 = 7−2 𝑦 = 7−2
5 9
𝑦=2 𝑦=2
9 5 5 9
∴ 𝑥 = ,𝑦 = 𝑜𝑟 𝑥 = , 𝑦 =
2 2 2 2
𝑙𝑜𝑔2 (3𝑥 + 4)
𝑙𝑜𝑔2 𝑥 − =0 log 𝑏𝑛 = 𝑛 𝑙𝑜𝑔 𝑏
𝑙𝑜𝑔2 22
𝑙𝑜𝑔2 (3𝑥 + 4)
𝑙𝑜𝑔2 𝑥 − =0
2𝑙𝑜𝑔2 2
𝑙𝑜𝑔𝑎 𝑎 = 1
𝑙𝑜𝑔2 (3𝑥 + 4)
𝑙𝑜𝑔2 𝑥 − =0
2(1)
1
𝑙𝑜𝑔2 𝑥 − 𝑙𝑜𝑔2 (3𝑥 + 4) = 0
2
1
𝑙𝑜𝑔2 𝑥 = 𝑙𝑜𝑔2 (3𝑥 + 4)
2
1
𝑙𝑜𝑔2 𝑥 = 𝑙𝑜𝑔2 (3𝑥 + 4)2
1
𝑥 = (3𝑥 + 4)2
𝑥 2 = 3𝑥 + 4
𝑥 2 − 3𝑥 − 4 = 0
(𝑥 − 4)(𝑥 + 1) = 0
𝑥 = 4 𝑜𝑟 𝑥 = −1
𝑆𝑖𝑛𝑐𝑒 𝑥 > 0, ∴ 𝑥 = 4
3
8. (a) Solve the following equation | | = 7, 𝑥 ≠ 4.
𝑥−4
−4−𝑥
(b) Find the solution set for the inequality, 𝑥−3
≥ 𝑥 + 4, 𝑥 ≠ 3.
SOLUTION
3
(a) |𝑥−4| = 7
3 3
𝑥−4
=7 or 𝑥−4
= −7
3 = 7(𝑥 − 4) 3 = −7(𝑥 − 4)
3 = 7𝑥 − 28 3 = −7𝑥 + 28
7𝑥 = 3 + 28 7𝑥 = 28 − 3
7𝑥 = 31 7𝑥 = 25
31 25
𝑥= 𝑥=
7 7
−4−𝑥
(b) 𝑥−3
≥ 𝑥 + 4, 𝑥≠3
−4 − 𝑥
≥ 𝑥+4
𝑥−3
−4 − 𝑥
−𝑥−4≥ 0
𝑥−3
−4 − 𝑥 − 𝑥 (𝑥 − 3) − 4(𝑥 − 3)
≥0
𝑥−3
−4 − 𝑥 − 𝑥 2 + 3𝑥 − 4𝑥 + 12
≥0
𝑥−3
−𝑥 2 − 2𝑥 + 8
≥0
𝑥−3
−(𝑥 2 + 2𝑥 − 8)
≥0
𝑥−3
(𝑥 2 + 2𝑥 − 8)
≤0
𝑥−3
(𝑥 + 4)(𝑥 − 2)
≤0
𝑥−3
(𝑥 + 4) = 0 (𝑥 − 2) = 0 (𝑥 − 3) = 0
𝑥 = −4 𝑥=2 𝑥=3
(𝑥 + 4)
- + + +
(𝑥 − 2)
- - + +
(𝑥 − 3)
- - - +
(𝒙 + 𝟒)(𝒙 − 𝟐)
𝒙−𝟑
- + - +
𝑒 𝑥−3 , 𝑥 ≥ 3
(a) Show that (𝑓 𝑔)(𝑥) = {
𝑒 −(𝑥−3) , 𝑥 < 3
(b) Sketch the graph of 𝑦 = (𝑓 𝑔)(𝑥). Hence, state the interval in which
(𝑓 𝑔)−1 (𝑥) exists.
(c) Determine (𝑓 𝑔)−1 (𝑥),for 𝑥 ≥ 3.
1 2𝑒 𝑥
(d) Find the function ℎ(𝑥) for 𝑥 > 3, given that (ℎ 𝑓)(𝑥) = 1−3𝑒 𝑥. Hence, show
SOLUTION
= 𝑒 |𝑥−3|
𝑥 − 3, 𝑥 − 3 ≥ 0
|𝑥 − 3| = { 𝑥, 𝑥 ≥ 0
−(𝑥 − 3), 𝑥 − 3 < 0 |𝑥| = {
−𝑥, 𝑥 < 0
𝑥 − 3, 𝑥 ≥ 3
={
−(𝑥 − 3), 𝑥 < 3
(𝑓 𝑔)(𝑥) = 𝑒 |𝑥−3|
𝑒 𝑥−3 , 𝑥 ≥ 3
={
𝑒 −(𝑥−3) , 𝑥 < 3
b)
𝑦
𝑒3
1
𝑥
3
(𝑓 𝑔)(𝑥) = 𝑒 𝑥−3
𝑦 = 𝑒 𝑥−3
ln 𝑦 = ln 𝑒 𝑥−3
ln 𝑦 = 𝑥 − 3
𝑥 = ln 𝑦 + 3
∴ (𝑓 𝑔)−1 (𝑥) = ln 𝑥 + 3
d) 𝑓(𝑥) = 𝑒 𝑥 ,
2𝑒 𝑥
(ℎ 𝑓)(𝑥) =
1 − 3𝑒 𝑥
2𝑒 𝑥
ℎ[𝑓(𝑥)] =
1 − 3𝑒 𝑥
2𝑒 𝑥
ℎ[𝑒 𝑥 ] =
1 − 3𝑒 𝑥
𝐿𝑒𝑡 𝑦 = 𝑒 𝑥
2𝑦
ℎ[𝑦] =
1 − 3𝑦
2𝑥
ℎ[𝑥] =
1 − 3𝑥
2𝑥
ℎ(𝑥) =
1 − 3𝑥
2𝑥1 2𝑥2
=
1 − 3𝑥1 1 − 3𝑥2
𝑥1 (1 − 3𝑥2 ) = 𝑥2 (1 − 3𝑥1 )
𝑥1 − 3𝑥1 𝑥2 = 𝑥2 − 3𝑥1 𝑥2
𝑥1 = 𝑥2
−1 3 1 2 1
2 0 −4
10. (a) Given 𝑃 = [ ] , 𝑄 = [ 0 2] 𝑎𝑛𝑑 𝑅 = [3 2 2].
−1 6 2
−6 5 3 4 1
(b) Ahmad bought an examination pad, 2 pens and a tube of liquid paper for RM18.
Ali spent RM24 for 3 examination pads, 2 pens and 2 tubes of liquid paper. In
the meantime Abu spent RM36 at the same store for 3 examination pads, 4
pens and a tube of liquid paper. Let x, y and z represent the price per unit for
examination pad, pen and tube of liquid paper respectively.
SOLUTION
−1 3 1 2 1
2 0 −4
a) 𝑃 = [ ] , 𝑄 = [ 0 2] 𝑎𝑛𝑑 𝑅 = [3 2 2]
−1 6 2
−6 5 3 4 1
1 2 11 0 0
(3 2 2|0 1 0)
3 4 10 0 1
1 2 11 0 0
𝑅2∗ = 3𝑅1 − 𝑅2 (0 4 1|3 −1 0)
3 4 10 0 1
𝑅3∗ = 3𝑅1 − 𝑅3 1 2 11 0 0
(0 4 1|3 −1 0 )
0 2 2 3 0 −1
1 1 2 1 1 0 0
𝑅2∗ = 𝑅2 (0 1 1 | 3 1 )
4 4 4 −4 0
0 2 −2 3 0 −1
1 2 1 1 0 0
𝑅3∗ = 2𝑅2 − 𝑅3 1 3 1
0 1 4 | 4 −4 0
3 3 1
(0 0 − −
2 2
−
2
1)
1 0 0
2 1 2 13 1
𝑅3∗ = − 𝑅3 0 1
1|
4 −4 0
3 4 1 2
(0 0 11
3
− )
3
1 0 0
1 1 2 11 1 1
𝑅2∗ = 𝑅2 − 𝑅3
4 0 1 0|2 − 3 6
0 0 1 1 1 −2
( 3 3)
1 2
0 −3 3
𝑅1∗ = 𝑅1 − 𝑅3 1 2 0|
1 1 1
0 1 0 −
|2 3 6
0 0 1 1 2
( 1 3 − 3)
1 1
−1 3 3
1 0 0|
𝑅1∗ = 𝑅1 − 2𝑅2 1 1 1
0 1 0 −3 6
|2
0 0 1 1 2
( 1 3 − 3)
1 1
−1
3 3
1 1 1
𝑅 −1 = −
2 3 6
1 2
[1 3
− ]
3
𝑅𝑋 = 3𝑄 + 𝑃 𝑇
𝑅 −1 𝑅𝑋 = 𝑅−1 (3𝑄 + 𝑃 𝑇 )
𝑋 = 𝑅 −1 (3𝑄 + 𝑃 𝑇 )
1 1
−1
3 3
−1 3
1 1 1 2 0 −4 𝑇
= − [3 [ 0 2] + ([ ]) ]
2 3 6 −1 6 2
−6 5
1 2
[1 3
− ]
3
1 1
−1
3 3
1 1 1 −3 9 2 −1
= − [[ 0 6 ]+[ 0 6 ]]
2 3 6 −18 15 −4 2
1 2
[1 3
− ]
3
1 1
−1
3 3
1 1 1 −1 8
= − [ 0 12]
2 3 6 −22 17
1 2
[1 3
− ]
3
1 1 1 1
(−1)(−1) + ( ) (0) + ( ) (−22) (−1)(8) + ( ) (12) + ( ) (17)
3 3 3 3
1 1 1 1 1 1
= ( ) (−1) + (− ) (0) + ( ) (−22) ( ) (8) + (− ) (12) + ( ) (17)
2 3 6 2 3 6
1 2 1 2
( )( ) ( ) ( ) (1)(8) + ( ) (12) + (− ) (17)
[ 1 −1 + (3) 0 + (− 3) −22 3 3 ]
22 12 17
1+0− −8 + +
3 3 3
1 22 17
= − +0− 4−4+
2 6 6
44 34
[ −1 + 0 + 3 8+4−
3 ]
19 5
−
3 3
25 17
= −
6 6
41 2
[ 3 3]
bi) 𝑥 + 2𝑦 + 𝑧 = 18
3𝑥 + 2𝑦 + 2𝑧 = 24
3𝑥 + 4𝑦 + 𝑧 = 36
1 2 1 𝑥 18
bii) [3 2 𝑦
2] [ ] = [24]
3 4 1 𝑧 36
biii) 𝐴𝑋 = 𝐵
𝐴−1 𝐴𝑋 = 𝐴−1 𝐵
𝑋 = 𝐴−1 𝐵
1 1
−1
3 3
1 1 1 18
= − [24]
2 3 6 36
1 2
[1 3
− ]
3
1 1
(−1)(18) + ( ) (24) + ( ) (36)
3 3
1 1 1
= ( ) (18) + (− ) (24) + ( ) (36)
2 3 6
1 2
( )( ) ( ) ( )
[ 1 18 + (3) 24 + (− 3) 36 ]
−18 + 8 + 12
= [ 9−8+6 ]
18 + 8 − 24
2
= [7]
2
= 8 + 35 + 2
= 𝑅𝑀45.00