MHT Cet Triumph Maths Mcqs Based On STD Xii Syllabus MH Board Hints 12110 PDF
MHT Cet Triumph Maths Mcqs Based On STD Xii Syllabus MH Board Hints 12110 PDF
01 Mathematical Logic
1. x + 3 = 10 is an open sentence. 8.
It is not a statement. 1 2 3 4 5 6
option (C) is correct. p q ~q p q p ~q ~(p ~q)
T T F T F T
2. Since p q is false, when p is true and q is
T F T F T F
false.
F T F F T F
p (q r) is false, F F T T F T
p is true and q r is false
p is true and both q and r are false. The entries in the columns 4 and 6 are
identical.
3. Since, contrapositive of p q is ~q ~p. ~(p ~q) p q
contrapositive of (~p q) ~r is statement-l is true.
~(~r) ~(~p q) r (p ~q) Also, all the entries in the last column of the
above truth table are not T.
4. ~p: Rohit is short. ~(p ~q) is not a tautology.
The given statement can be written statement-2 is false.
symbolically as p (~p q). option (B) is correct.
5. Let p: x is a complex number 9. Consider option (C)
q: x is a negative number (p q) (p r) (T T) (T F)
Logical statement is p q TT
converse of p q is q p T
option (C) is correct.
option (B) is correct.
11. The statement “Suman is brilliant and
6. Consider option (C)
dishonest iff suman is rich” can be expressed
p q r ~q p ~q (p ~q) r as Q (P ~R)
T T T F F T The negation of this statement is
T T F F F T ~(Q (P ~R))
T F T T T T
12. (q) (p) is contrapositive of p q.
T F F T T F
F T T F F T p q (~q) (~p)
F T F F F T option (D) is true.
F F T T F T 13. (~p ~q) (p q) (~p q)
F F F T F T ~p (~q q) (p q)
(p ~q) r is a contingency (~p T) (p q)
option (C) is correct. ~p (p q)
(~p p) (~p q)
7. Consider option (A) T (~p q)
p q p q p q ~(p q) (p q) (p q)) ~p q
T T T T F F option (B) is correct.
T F F T F F 14. Since, inverse of p q is ~p ~q.
F T F T F F inverse of (p ~q) r
F F F F T F is ~(p ~q) ~r
(p q) (~(p q)) is a contradiction. i.e., ~p q ~r
option (A) is correct.
1
Target Publications Pvt. Ltd. Chapter 02: Matrices
02 Matrices
1 2 2 1 tan 1 1 tan
tan 2 tan
2. |A| = 2 1 1 = 1(1) 2(7) + 2(9) 1 sec 1
1 4 3 1 1 tan 2 2 tan
=
=30 sec2 2 tan 1 tan 2
1
A exists. cos 2 sin 2
T =
1 7 9 1 2 0 sin 2 cos 2
adj A = 2 5 6 = 7 5 3 By equality of matrices, we get
0 3 3 9 6 3 a = cos 2, b = sin 2
1 2 0
1 1 2 3 x 6
A = 7 5 3
1
2 4 1 y 7
3 6.
9 6 3
3 2 9 z 14
sum of the elements of A1
R2 R2 2R1, R3 R3 3R1
1
= ( 1 2 + 0 7 5 3 + 9 + 6 + 3) = 0 1 2 3 x 6
3 0 0 5 y = 5
3. (adj A) A = |A| In
0 4 0 z 4
2 0 3 1 0 0
5z = 5 z = 1
A = 1 1 2 0 1 0
4y = 4 y = 1
3 2 0 0 0 1 x + 2y + 3z = 6 x = 1
1 0 0
= 11 0 1 0 1 2 1
7. Let A = 2 3
0 0 1
1 0 3
11 0 0
Matrix will not be invertible if |A| = 0
= 0 11 0
1 2 1
0 0 11
2 3 =0
1 2 4 1 0 3
4. Let A = 3 19 7 1(3) + 2(9) 1() = 0
2 4 8 =9
|A| = 0 8. Given, |A| 0 and |B| = 0
A1 does not exist.
|AB| = |A| |B| = 0
1 tan
1
1 1 tan
T and |A1 B| = |A1| |B|
5. tan =
1
sec tan
2
1 =
1
|B|
1
.... | A |
1
|A| | A |
1 1 tan =0
=
sec tan
2
1 1
AB and A B are singular.
1
Std. XII : Triumph Maths
9. (AB)1 = B1 A1 13. Since, A(adj A) = |A|.I
1 1 Replacing A by adj A, we get
adj A (adj(adj A)) = |adj A|I
B1 A1 = 2 2
1 0 A1.|A| (adj(adj A)) = |adj A|I
4 1
…. A 1 (adjA)
|A|
10. (A2 8A)A1 = A.A.A1 8A.A1 1 2
A (adj (adj A)) = |A| .I
= A 8I
….[ |adj A| = |A|n1]
1 4 4 8 0 0
= 4 1 4 0 8 0 A1(adj (adj A)) = 2I
4 4 1 0 0 8 A1 (adj (adj A)) = I
Given, A1(adj (adj A)) = kI
7 4 4
k=
= 4 7 4
4 4 7
1 2 0
11. det A = 1 1 2
2 1 1
= 13
2
det (adj (adj A)) = (det A)(3 1)
…. adj(adjA) A
(n 1)2
= (det A)4 = (13)4
4 0 0
12. A. (adj A) = 0 4 0 ….(i)
0 0 4
1 0 0
= 4 0 1 0
0 0 1
= 4.I
Since, A(adj A) = |A|.I
|A| = 4
From (i), |A| . |adj A| = 64
64
|adj A| = = 16
4
(n 1) 2
Also, |adj (adj A)| = A
(31)2
= A
= (4)4 = 256
adj(adjA) 256
= = 16
adjA 16
2
Target Publications Pvt. Ltd. Chapter 03: Trigonometric Functions
03 Trigonometric Functions
1. sin 3x = 3 sin x 4 sin3x But cos x > 0 (x must be in 1st or 4th Quadrant)
1 3
sin3x = (3sin x sin 3 x) the possible values are , .
4 8 8
cos 3x = 4 cos3x 3 cos x Case II:
1 If cos x < 0,
cos3x = (cos3 x 3cos x) 1 1
4 sin x(cos x) = sin 2x =
Given, cos 3x cos3x + sin 3x sin3 x = 0 2 2 2
1 5 7
cos 3x (cos 3x + 3 cos x) 2x = ,
4 4 4
1 5 7
+ sin 3x (3 sin x sin 3x) = 0 x= ,
4 8 8
1 The values of x satisfying the given equation
cos 2 3x+ 3cos x cos3x +3sin x sin 3x sin 2 3x 0
4 3 5 7
between 0 and 2 are , , , .
cos2 3x sin2 3x + 3(cos 3x cos x 8 8 8 8
+ sin 3x sin x) = 0
cos 6x + 3 cos 2x = 0 These are in A.P. with common difference .
4
4 cos3 2x 3 cos 2x + 3 cos 2x = 0
2 2x
4 cos3 2x = 0 3. 16sin x 16cos = 10
cos 2x = 0 sin 2 x 2
16 161 sin x = 10
2x = (2n + 1) 2 16
2 16sin x 2
= 10
16sin x
x = (2n + 1) 2
4 Let t = 16sin x
16
2. sin x 8cos 2 x = 1 t+ = 10
t
sin x 2 2 cos x = 1 …. 8 2 2 t2 + 16 = 10t
t2 10t + 16 = 0
1 (t 2) (t 8) = 0
sin x |cos x| =
2 2 t = 2 or t = 8
Case I: 2 2
16sin x = 2 or 16sin x = 8
1 2 2
If cos x > 0, sin x cos x = 24sin x = 21 or 24sin x = 23
2 2
4 sin2x = 1 or 4 sin2x = 3
1 1
sin 2x = 1 3
2 2 2 sin2 x = or sin2 x =
4 4
1
sin 2x =
2 sin2x = sin2 or sin2x = sin2
6
3
3 9 11
2x = , , , x = n ± or x = n ±
4 4 4 4 6 3
….[ x (0, 2), 2x (0, 4)] 7 5 11 4 2 5
x= , , , or x = , , ,
3 9 11 6 6 6 6 3 3 3 3
x= , , ,
8 8 8 8 There are 8 solutions in [0, 2].
1
Std. XII : Triumph Maths
4. The maximum value of a sin x + b cos x is 6. tan4x 2 sec2x + a2 = 0
a 2 b2 . tan4x 2(1 + tan2x) + a2 = 0
tan4x 2 tan2x 2 + a2 = 0
Maximum value of sin x + cos x is 2 and the
maximum value of 1 + sin 2x is 2. tan4x 2 tan2x + 1 3 + a2 = 0
The given equation will be true only when (tan2 x 1)2 = 3 a2
3 a2 0
sin x + cos x = 2 and 1 + sin 2x = 2
a2 3
If sin x + cos x = 2
|a| 3
1 1
cos x + sin x =1
2 2 7. 3 cos x + 4 sin x = 5
2 x x
cos x cos + sin x sin = 1 1 tan 2 2 tan 2
4 4 3 + 4 = 5
1 tan 2 x 1 tan 2 x
cos x = 1 2 2
4
x
Let tan = t
x = 2n, 2
4 3 3t + 8t = 5 + 5t2
2
8t2 8t + 2 = 0
x = 2n + ….(i)
4 4t2 4t + 1 = 0
1 + sin 2x = 2 sin 2x = 1 (2t 1)2 = 0
1
sin 2x = sin t=
2 2
x
2x = n + (1)n. tan = tan
2 2
n x
x= + (1)n. ….(ii) = n +
2 4 2
The value of x [, ] which satisfies both x = 2n + 2
(i) and (ii) is . 2
4
8. tan + tan + tan = 3
3 3
5. sin4 x + cos4 x = sin x cos x
(sin2x + cos2x)2 2 sin2x cos2x = sin x cos x tan 3 tan 3
tan + + =3
1 1 1 3 tan 1 3 tan
1 (2 sin x cos x)2 = .2sin x cos x
2 2 tan (1 3 tan 2 ) (tan 3) (1 3 tan )
1 1
1 sin2 2x = sin 2 x (tan 3) (1 3 tan )
2 2 =3
1 3 tan 2
sin22x + sin 2x 2 = 0
9 tan 3tan 3
(sin 2x + 2) (sin 2x 1) = 0 =3
1 3tan 2
sin 2x = 1 ….[sin 2x 2]
3tan tan 3
sin 2x = sin 3 =3
1 3tan
2
2
3 tan 3 = 3
2x = n + (1)n
2
tan 3 = 1 = tan
n 4
x= + (1)n
2 4
3 = n +
5 4
The value of x in [0, 2] are and .
4 4
= (4n + 1)
There are 2 solutions. 12
2
Chapter 03: Trigonometric Functions
5 20 2 (b c) 2 2bc a 2
9. cos =
6 37 3 2bc
A B 1 (3 3) 2 2 18 a 2
tan > tan =
2 2 2 2 18
A B
18 = 27 + 36 a2
2 2
a2 = 27 + 36 + 18 = 81
A>B
A B a = 9 cm
tan tan
A B 2 2
tan = 11.
2 2 1 tan A tan B B
2 2
30
5 20 3 1
A B 6 37
tan =
2 1 5 20
6 37 105 45
A C
C 185 120
tan =
2 222 100
Let B = 30, C = 45 A = 105
C 305
tan = sin A sin B sin C
2 2 122
a b c
C 305 sin105 sin 30 sin 45
cot =
2 122 3 1 b c
C 122
tan =
2 305
b=
3 1 sin 30
3 1
20 122 sin105 2sin105
Since, >
B
37
C
305
c=
3 1 sin 45
=
3 1
tan tan sin105 2 sin105
2 2
B C 1
A(ABC) = bc sin A
2 2 2
B>C 1 3 1 3 1
= sin105
A>B>C 2 2sin105 2 sin105
a>b>c
2
3 1
9 3 =
10. A(ABC) = 4 2 sin (60 45)
2
2
1 9 3 3 1
bcsin A = =
2 2 3 1 1 1
4 2
1
bc
3 9 3
= 2 2 2 2
2 2 2
2
3 1
2 3 =
…. sin A sin 3 1
3 2 4 2
bc = 18 2 2
b2 c2 a 2 3 1
cos A = =
2bc 2
3
Std. XII : Triumph Maths
bc ca ab 2(a b c) n2 3n 4 = 0
12. Let k =
11 12 13 36 (n + 1) (n 4) = 0
abc n = 1 or n = 4
= But n cannot be negative.
18
….(By property of equal ratio) n=4
b + c = 11k, c + a = 12k, a + b = 13k, The sides of the are 4, 5, 6.
a + b + c = 18 k
14.
a = 7k, b = 6k, c = 5k A
b 2 c2 a 2
cos A =
2bc
E O B
36k 25k 2 49k 2
2
=
2(6k)(5k) r 72 r
12k 2 1
= 2
=
60k 5 D C
1 360
cos A = In ODC, OD = OC = r, DOC = = 72
5 5
13. A 1 1
A(ODC) = r.r. sin 72 = r2 sin 72
2 2
n+1 n 5
A2 = Area of pentagon = r2 sin 72
2
B A1 = Area of circle = r2
C
n+2 A1 r 2
=
Let AC = n, AB = n + 1, BC = n + 2 A2 5 2
r sin 72
Largest angle is A and smallest angle is B. 2
A = 2B 2 2 2
Since, A + B + C = 180 = = sec 18 = sec
5cos18 5 5 10
3B + C = 180
C = 180 3B 15. Let a = 4k, b = 5k, c = 6k
sin C = sin(180 3B) = sin 3B abc 4k 5k 6k 15k
Now, s = = =
sin A sin B sin C 2 2 2
= =
n2 n n 1 = s(s a) (s b) (s c)
sin 2B sin B sin 3B
= = 15k 15k 15k 15k
n2 n n 1 = 4k 5k 6k
2 2 2 2
2sin Bcos B sin B 3sin B 4sin 3 B
= =
n2 n n 1 15k 7k 5k 3k 15 7 2
= = k
2cos B 1 3 4sin B2
2 2 2 2 4
= =
n2 n n 1 a a
By sine Rule, = 2R sin A =
n2 n 1 sin A 2R
cos B = , 3 4 sin2B =
2n n 1
n 1 = b csin A
3 4(1 cos2 B) = 2
n 1 a abc
2 = bc =
n2 n 1 2 2R 4R
3 4 + 4 =
2n n abc 4k.5k.6k 8
R= = = k
n 4n 4
2
n 1 4 15 7k 2
7
1+ =
n 2
n Also = rs, where r = Radius of incircle of
n2 + n2 + 4n + 4 = n2 + n ABC
4
Chapter 03: Trigonometric Functions
ac acb 1 1
r = 1
33
acb acb = tan
ac(a c b) ac(a c b) 1 1 1
= = 2 3 3
(a c) b
2 2
a c 2 2ac b 2
33
acb = tan1
= 2 2
….[ a + c = b ] 2
9 1
2
Diameter = a + c b 6
= tan1
8
21. A = 55, B = 15, C = 110 3
a b c = tan1
= = =k 4
sin 55 sin15 sin110
1
cot 2cot 1 3 =
a = k sin 55, b = k sin 15, c = k sin 110 4 3
tan tan 1
c2 a2 = k2 sin2 110 k2 sin2 55 4 4
= k2(sin 110 + sin 55) (sin 110 sin 55) 3
1 tan tan tan 1
165 55 55 165 4 4
= k2 2sin cos =
2sin cos 1
2 2 2 2 tan tan tan
4 4
= k2 sin 165 sin 55
3
= k2 sin 15 sin 55 1 1
= 4 43 = 7
= (k sin 55) (k sin 15) 3 43
1
= ab 4
6
Chapter 03: Trigonometric Functions
1 a
24. Let cos 1 = 2x = sin sin 1 x
2 b 3
a
cos1 = 2 = sin cos (sin1 x) – cos sin (sin1 x)
b 3 3
a 3 1
cos 2 = 2x = cos (sin1 x) x …. (i)
b 2 2
1 a 1 Let sin1 x =
1 a
tan cos 1 + tan 4 2 cos b sin = x
4 2 b
cos = 1 x 2
= tan + tan cos (sin1 x) = 1 x 2 ….(ii)
4 4
1 tan 1 tan From (i) and (ii), we get
= 3 1
1 tan 1 tan 2x = 1 x2 x
2 2
1 tan 1 tan
2 2
= 4x = 3 1 x2 x
1 tan 2
2 1 tan 2 5x = 3 1 x 2
= 25x2 = 3 3x2 (squaring both sides)
1 tan 2
28x2 = 3
2 2 2 2b
= = = = 3
1 tan cos 2
2
a a x2 =
28
1 tan
2
b
3 1 3 1 3
x= = =
25. cos1 cos1 = cos1 1 2 1 2 28 4 7 2 7
(From the given relation it can be seen that x is
y positive)
Given, cos1 x – cos1 =
2
33 1
xy y2 27. L.H.S. = sin1 sin + cos cos
cos1 1 x 2 1 = 7 7
2 4
13 1 19
+ tan1 tan + cot cot
xy 2
8 8
cos =
2
1 x 1 y4
2
2 1
= sin1 sin 5 + cos cos
7 7
2
xy
1 x 1 y4
2
= cos
2
+ tan1 tan
8
2
2 1 x 1 y4
2
= 2 cos xy
+ cot1 cot
8
Squaring on both sides, we get
2 3
y2 = sin1 sin cos 1 cos
4(1 x2) 1 = 4 cos2 4xy cos + x2y2 7 7
4
4 y2 4x2 + x2y2 = 4 cos2 4xy cos + x2y2 + tan1 tan + cot1 cot
8 8
4x2 + y2 4xy cos = 4 4 cos2
4x2 + y2 4xy cos = 4 sin2 2 3 3 5
=
7 7 8 8
….[ cos1 (x) = cos1 x]
26. sin1 x + sin1 2x =
3
13
= = 2
sin1 2x = sin1 x 7 7 7
3
7
Std. XII : Triumph Maths
13 a 1 1 1
3
3 sin1 = sin1 3 4
7 b 3 3 3
a = 13, b = 7
4
a + b = 13 + 7 = 20 = sin1 1
27
4 5 16 23
28. sin1 + sin1 + sin1 = sin1 = sin1 (0.852)
5 13 65 27
4 2
4
2
3 1.732
1
1 5 5 = 0.866, 0.852 < 0.866
= sin 1
5 13 13 5 2 2
sin1 (0.852) < sin1 (0.866)
1 16
+ sin ….[ sin1 x is also an increasing function]
65
3
4 12 5 3 1 16 1
1 3 sin1 < sin1 2
= sin 5 13 13 5 + sin 65 3
48 15 1 16 1
= sin1 + sin 3 sin1 < ....(ii)
65 65 3 3
63 16 3
= sin1 + sin1 3
sin1 = sin1 (0.6) < sin1 2
65 65 5
63
2
16
= cos1 1 + sin1 3
sin1 < ….(iii)
65 65 5 3
From (ii) and (iii), we get
16 16
= cos1 + sin1 1 3
65 65 B = 3 sin1 + sin1 < + =
3 5 3 3 3
=
2 B< ….(iv)
3
29. 2 = 1.414 From (i) and (iv), A > B
2 2 1 = 2 1.414 1 = 2.828 1 = 1.828
30. cot1 x + cot1 y + cot1 z =
2 21> 3 ….[ 3 1.732 ] 2
8
Chapter 03: Trigonometric Functions
tan (A + B + C) = 0 x2 (6x + 2) = 2(8x2 + 6x)
tan A + tan B + tan C = tan A tan B tan C 6x3 + 2x2 – 16x2 12x = 0
6x3 14x2 12x = 0
tan (tan1 x) + tan(tan1 y) + tan(tan1z)
3x3 7x2 6x = 0
= tan(tan1 x) tan(tan1 y) tan(tan1 z) x(3x2 7x 6) = 0
x + y + z = xyz x(x 3) (3x + 2) = 0
2
1 9 9 x = 0, 3,
31. cos1 cos sin 3
2 10 10 But x > 0, x=3
9 9 1
= cos1 cos cos sin sin 34. cot1 x + sin1 =
4 10 4 10 5 4
9 1
= cos1 cos 1
4 10 tan1 + tan1 5 =
x 1 4
1 5 18 1
= cos cos 20 5
x
…. sin 1 x tan 1
23 1 x2
= cos1 cos
20 1 1
tan1 tan 1
1 23 x 2 4
= cos cos 2 20 1 1
17 17 tan1 x 2 =
= cos1 cos and 0 ≤ ≤ 1 1 1 4
20 20 x 2
17 2 x
= = tan = 1
20 2x 1 4
17 2 + x = 2x – 1
Principal value is . x=3
20
23
32. tan1 2 + tan1 3 = + tan1
1 23
….[ 2 3 > 1]
= + tan1 (1)
= tan1 1
tan1 1 + tan1 2 + tan1 3 =
1 1 2
33. tan1 + tan1 = tan1 2
1 2x 4x 1 x
1 1
2
tan1 1 2 x 4 x 1 = tan1 2
1 1 1 x
1 2x 4x 1
4x 1 2x 1 2
= 2
1 2 x 4 x 1 1 x
6x 2 2
= 2
4 x 8x 1 2 x 1 x
2
9
Target Publications Pvt. Ltd. Chapter 04: Pair of Straight Lines
04 Pair of Straight Lines
2 507 2 13 3
tan = = = 3
26 26
= tan–1 ( 3 ) =
3
2
Chapter 05: Vectors
05 Vectors
a 1 1
2. Given, r 1 r 1 2 r 2 3 r 3
5. Since, 1 b 1 0
2a 3b 4c (1 2 3 )a 1 1 c
8. Given, r b = c b l m n
n l m 0 .... a b c 0
r c b= 0
m n l
r c is parallel to b l3 + m3 + n3 3lmn = 0
r c = b for some scalar (l + m + n) (l2 + m2 + n2 lm mn nl) = 0
r = c b ….(i) l+m+n=0
r . a = c.a + b a 11.
P
A
0 = c.a + b a M
…. r a 0(given) H
O
a.c
= B C
a.b D
Substituting the value of in (i), we get
a.c
r= c b
a.b
Let point O be the circumcentre of ABC.
a.c
r.b = c.b (b.b)
a.b Let a , b , c , p , d , h , m be the position
(4) vectors of the respective points.
r.b 1 2=9
1 Since, h = a + b + c ….(Standard formula)
2
Chapter 05: Vectors
pa 27 65 18 39 9 26
= , ,
2 16 16 16
38 57 17
pa , ,
DM PA = ap 16 16 16
2
19 57 17
1 , ,
= a 2 p2 8 16 16
2
17. A(x1, y1, z1)
=0
….[ O is circumcentre, OA = OP i.e., a = p] (l, 0, 0) (0, 0, n)
DM is perpendicular to PA.
15. Let position vector of Q be r B(x2, y2, z2) (0, m, 0) C(x3, y3, z3)
Since, p divides PQ in the ratio 3 : 4 x1 + x2 = 2l, x2 + x3 = 0, x3 + x1 = 0
3r 4(3p q) On solving we get x1 = l, x2 = l, x3 = l
= p
3 4 y1 + y2 = 0, y2 + y3 = 2m, y3 + y1 = 0
On solving we get y1 = m, y2 = m, y3 = m
7 p = 3 r + 12 p + 4 q z1 + z2 = 0, z2 + z3 = 0, z3 + z1 = 2n
– 5p – 4q = 3 r On solving we get z1 = n, z3 = n, z2 = n
1 A(l, m, n), B(l, m, n), C(l, m, n)
r =
3
5p 4q By distance formula,
AB2 = (l l)2 + (m m)2 +(n + n)2 = 4m2 + 4n2
16. A(3, 2, 0) BC2 = (l + l)2 + (m m)2 +(n n)2 = 4l2 + 4n2
CA2 = (l + l)2 + (m m)2 +(n n)2 = 4l2 + 4m2
3 13 AB2 BC2 CA 2
l 2 m2 n 2
4m 2 4n 2 4l 2 4n 2 4l 2 4m 2
=
B(5, 3, 2) D C (–9, 6, –3) l 2 m2 n 2
By distance formula, =8
l 2
m2 n 2
=8
l 2 m2 n 2
AB = (5 3) (3 2) (2 0)
2 2 2
18. A(1, 0, 3)
= 4 1 4
= 9=3
AC = (3 9) 2 (2 6) 2 (0 3) 2
= 144 16 9
B(4, 7, 1) D C(3, 5, 3)
= 169 = 13
Let D be the foot of perpendicular and let it
Point D divides seg BC in the ratio of 3 : 13 divide BC in the ratio : 1 internally
By section formula,
3
Std. XII : Triumph Maths
3 4 5 7 3 1
D , ,
1 1 1
AD = d a
3 4 ˆ 5 7 ˆ 3 1 ˆ ˆ ˆ
= i j k i 3k
1 1 1
2 3 ˆ 5 7 ˆ 2 ˆ
= i j k
1 1 1
BC = 3iˆ 5jˆ 3kˆ 4iˆ 7ˆj kˆ
= ˆi 2ˆj 2kˆ
Since, AD BC .
AD . BC = 0
2 3 5 7 2
( 1) ( 2) (2) 0
1 1 1
2 3 10 14 4 = 0
12 21 = 0
7
=
4
7 7 7
3 4 4 5 4 7 3 4 1
D , ,
7 1 7
1
7
1
4 4 4
21 16 35 28 21 4
, ,
7 4 7 4 7 4
5 7 17
, ,
3 3 3
4
Chapter 06: Three Dimensional Geometry
06 Three Dimensional Geometry
2 2 1 1
=
6 6 6
1
= cos1
6
6. Since, (l m)2 0
l2 2lm + m2 0
l2 + m2 2lm ….(i)
2 2
Similarly, m + n 2mn ….(ii)
2 2
and n + l 2nl ….(iii)
Adding (i), (ii) and (iii), we get
2(l2 + m2 + n2) 2(lm + mn + nl)
lm + mn + nl 1
The maximum value of lm + mn + nl is 1.
7. Let A = (a, 2, 3), B (3, b, 7) and
C (3, 2, 5)
d.r.s of AB are 3 a, b 2, 4
d.r.s of BC are 6, 2b, 12
Since the points are collinear
3a b 2 4
6 2 b 12
a = 2, b = 4
8. Let the d.r.s of the line perpendicular to both
the lines be a, b, c.
d.r.s of lines is 1, 1, 0 and 2, 1, 1
ab=0 ….(i)
2a b + c = 0 ….(ii)
On solving (i) and (ii), we get
a b c
1 1 1
d.r.s of the line are 1, 1, 1
1 1 1
the required d.c.s are , ,
3 3 3
07 Line
x 1 y 12 z 7 63 63
1. Let =r k2 = = 81
1 5 2 49
x = r 1, y = 5r + 12, z = 2r + 7 k=9
Co-ordinates of any point on the line are Since, the line makes obtuse angle with X-axis
(r 1, 5r + 12, 2r + 7). component along X-axis is negative.
This point lies on the curve 11x2 – 5y2 + z2 = 0 k = 9
11( r 1)2 5(5r + 12)2 + (2r + 7)2 = 0 The components of the line vector are 3k, 2k, 6k
11r2 + 22r + 11 125r2 – 600r 720 i.e., 27, 18, 54
+ 4r2 + 28r + 49 = 0 4. Let M be the foot of the perpendicular drawn
2
110r – 550r – 660 = 0 from the point P(3, 1, 11) to the given line.
r2 + 5r + 6 = 0 x y 2 z3
(r + 2)(r + 3) = 0 Let
2 3 4
r = 2 or r = 3
x = 2, y = 3 + 2, z = 4 + 3
If r = 2, then the point is (1, 2, 3)
M (2, 3 + 2, 4 + 3)
and if r = 3, then the point is (2, 3, 1)
d.r.s. of PM are 2 3, 3 + 3, 4 8
option (A) is correct. Since, PM is perpendicular to the given line
2. The given equation of line is (2 3)(2) + (3 + 3)(3) + (4 8)(4) = 0
x = 4y + 5, z = 3y 6. 4 6 + 9 + 9 + 16 32 = 0
It can be written as =1
x5 z6 M (2, 5, 7)
y= = r, say
4 3 length of perpendicular (PM)
co-ordinates of the any point on the line are = (3 2) 2 (1 5) 2 (11 7) 2
(4r + 5, r, 3r 6).
= 1 36 16
This point is at a distance of 3 26 from the
= 53
point (5, 0, 6)
2
(4r + 5 5)2 + (r 0)2 + (3r 6 + 6)2 = 3 26 5. When square is folded co-ordinates will be
D(0, 0, a), C(a, 0, 0), A(– a, 0, 0), B(0, – a, 0).
16r2 + r2 + 9r2 = 234 Y
26r2 = 234
r2 = 9 D
r = 3
a
If r = 3, then the point is
(4 3 + 5, 3, 3 3 6) (17, 3, 3) a a
X A C X
3. Let the components of the line vector be a, b, c. a
a2 + b2 + c2 = (63)2 ….(i)
a b c B
Also, k , say
3 2 6 Y
a = 3k, b = 2k, c = 6k xa y z
Substituting value of a, b and c in equation (i), Equation AB is,
we get a a 0
9k2 + 4k2 + 36k2 = 632 x y za
and equation of DC is
49k2 = 63 63 a 0 a
1
Std. XII : Triumph Maths
shortest distance Let S divide AB in the ratio : 1
a 0 a 3 4 5 7 3 1
S , , ….(i)
a a 0 1 1 1
a 0 a Now, d.r.s. of PS are
=
(a 2 0) 2 (0 a 2 ) 2 (0 a 2 ) 2 3 4 5 7 3 1
1 , 0 , 3
1 1 1
2 3 5 7 2
i.e., , ,
1 1 1
a(a 2 ) a(a 2 ) 2a 3 2a i.e., 2 + 3, 5 + 7, 2
= = =
a a a
4 4 4
3a 4
3 Also, d.r.s. of AB are 1, 2, 2
6. Given equation of motion of a rocket is Since, PS AB
x = 2t, y = 4t, z = 4t (2 + 3)(1) + (5 + 7)(2) + (2)(2) = 0
x y z 2 3 10 14 4 = 0
i.e., the equation of the path is
2 4 4 7
=
x y z 4
i.e.,
1 2 2 Substituting the value of in (i), we get
Thus, the path of the rocket represents a 5 7 17
straight line passing through the origin. S= , ,
3 3 3
For t = 10 sec.
we have, x = 20, y = –40, z = 40 9. Equation of the line passing through the points
Let M(20, 40, 40) (5, 1, a) and (3, b, 1) is
OM = x2 y 2 z2 x 3 y b z 1
….(i)
5 3 1 b a 1
= 400 1600 1600 = 60 km
17 13
Rocket will be at 60 km from the starting The line passes through the point 0, ,
2 2
point O(0, 0, 0) in 10 seconds.
17 13
7. d.r.s. of L1 are 3, 1, 2 and d.r.s. of L2 are 1, 2, 3 b 1
3
ˆi ˆj kˆ = 2 2 ….[From (i)]
2 1 b a 1
vector perpendicular to L1 and L2 = 3 1 2 15
1 2 3 a–1= 2 =5
3
= ˆi(3 4) ˆj(9 2) k(6
ˆ 1)
2
= ˆi 7ˆj 5kˆ a=5+1=6
ˆi 7ˆj 5kˆ ˆi 7ˆj 5kˆ and 3 + 3b = 17 – 2b
unit vector = = 5b = 20 b = 4
1 49 25 5 3
a = 6, b = 4
8. Let S be the foot of perpendicular drawn from
P(1, 0, 3) to the join of points A(4, 7, 1) and
B(3, 5, 3)
P (1, 0, 3)
1
A(4,7,1) S B(3,5,3)
2
Target Publications Pvt. Ltd. Chapter 08: Plane
08 Plane
bx + ay z = 0 ….(iii) r. ˆi 2ˆj kˆ 3
Equation of a plane passing through the line of
intersection of planes (i) and (ii) is b 2iˆ ˆj 4kˆ and
x cy bz + k(cx y + az) = 0 n ˆi 2ˆj kˆ
(1 + ck)x (c + k)y (b ak)z = 0 ….(iv)
Now, planes (iii) and (iv) are same for some
Consider b n = 2iˆ ˆj 4kˆ ˆi 2ˆj kˆ
value of k, =2+2–4
1 ck c k (b ak) =0
= =
b a 1 the line lies in the plane.
1 ck ck
= 4. The equation of the given line is
b a
1 1
a + ack = bc – bk x = 2 + t, y = 1 + t, z = t
2 2
k(b + ac) = (a + bc)
1
a bc z
k= x 2 y 1 2
b ac 1 1 1
ck 2
Also, = b ak
a The given line passes through the point
a bc 1 1
c b ac 2,1, and it’s d. r.s are 1, 1,
a bc 2 2
b a
a b ac The equation of the given plane is
x + 2y + 6z = 10
bc ac 2 a bc d.r.s of the normal to the plane are 1, 2, 6
= b2 + abc + a2 + abc
a ax1 by1 cz1 d
p=
1 – c2 = a2 + b2 + 2abc a 2 b2 c2
a2 + b2 + c2 + 2abc = 1
1
1(2) 2(1) 6 10
2. Let a, b, c be the intercepts form by the plane 2
=
on co-ordinate axes. 12 22 62
1 1 1 1
Since,
a b c 2
2 2 3 10 9
2 2 2 = =
1 1 4 36 41
a b c
9
The point (2, 2, 2) satisfies the equation of the =
x y z 41
plane 1 .
a b c = 9, = 41
the required point is (2, 2, 2). 5 = 5(9) 41 = 45 – 41 = 4
1
Std. XII : Triumph Maths
5. Let a be the vector along the line of Let A (2, 1, 3), AM be to the given plane
intersection of the planes 3x 7y 5z = 1 and and let B (x, y, z) be the image of A in the
8x – 11y + 2z = 0. the d.r.s of the normals to Plane.
the planes are 3, 7, 5 and 8, 11, 2. the d.r.s. of the normal to the plane are 3, 2, 1
ˆi ˆj kˆ The equation of the line AM is
a = 3 7 5 x 2 y 1 z 3
= k, say
8 11 2 3 2 1
= ˆi(14 55) ˆj(6 40) k(
ˆ 33 56) x = 3k + 2, y = 2k 1, z = k + 3
Let M (3k + 2, 2k 1, k + 3)
= 69iˆ 46ˆj 23kˆ
equation of plane becomes
Similarly, let b the vector along the line of
3(3k + 2) 2(2k 1) (– k + 3) = 9
intersection of the planes 5x 13y + 3z + 2 = 0
and 8x – 11y + 2z = 0 2
k=
the d.r.s of the normals to the planes are 7
5, 13, 3 and 8, 11, 2 6 4 2 20 11 19
M 2, 1, 3 , ,
ˆi ˆj kˆ 7 7 7 7 7 7
b = 5 13 3 Since, M is the mid point of AB.
8 11 2 x1 2 20 y1 1 11 z 3 19
= , , 1
2 7 2 7 2 7
= ˆi(26 33) ˆj(10 24) k(
ˆ 55 104)
26 15 17
= 7iˆ 14ˆj 49kˆ x1 = , y1 = , z1 =
7 7 7
Consider,
26 15 17
a . b = 69iˆ 46ˆj 23kˆ . 7iˆ 14ˆj 49kˆ Image of A is B , ,
7 7 7
= 69 7 + (46) 14 + 23 49
= 483 644 + 1127 8. Since, a and b are coplanar, a b is a vector
= 1127 + 1127 perpendicular to the plane containing a and b .
=0
a and b are perpendicular Similarly, c d is a vector perpendicular to the
= 90 plane containing c and d .
sin = sin 90 = 1 The two planes will be parallel, if their normals
6. The equation of the given plane is a b and c d are parallel.
2x (1 + )y + 3z = 0
2x y y + 3z = 0 a b c d 0
(2x y) (y 3z ) = 0
1 9. Equation of the plane containing the given
(2x y) (y 3z) = 0 lines is
The plane passes through the point of x 1 y 2 z 3
intersection of the planes 2x y = 0 and 2 3 4 =0
y 3z = 0 3 4 5
7. A(2, 1, 3) (x 1) (15 16) (y 2) (10 12)
+ (z 3) (8 9) = 0
(x 1) (1) (y 2) (2) + (z 3) (1) = 0
3x – 2y – z = 9
M x + 1 + 2y 4 z + 3 = 0
x + 2y z = 0
B x 2y + z = 0 ….(i)
2
Chapter 08: Plane
Given equation of plane is The equation of the plane is
Ax 2y + z = d ….(ii) x y z
=1
The planes given by equation (i) and (ii) are a b c
parallel. Since, this plane is at a distance of 1 unit from
A=1 the origin,
distance between the planes (D) is
1
d d =1
D= 1 1 1
12 2 12
2
6 2
2 2
a b c
d 1 1 1
= 6 2
2 2 =1
6 a b c
|d| = 6 1 1 1
2 2 2 = 1 ….[From (i)]
9x 9y 9z
10. P(2, 1, 2)
1 1 1
2
2 2 =9
x y z
k=9
Q 2x + y + z = 9
12. Let the equation of the plane OAB be
ax + by + cz = d
Since, direction cosines of PQ are equal and This plane passes through the points A(1, 2, 1)
positive and B(2, 1, 3)
1 1 1 a + 2b + c = 0, …(i)
the d.r.s. of PQ are , ,
3 3 3 and 2a + b + 3c = 0 …(ii)
The equation of the line PQ is on solving (i) and (ii), we get
x 2 y 1 z 2 a b c
1 1 1 5 1 3
3 3 3 Similarly, let the equation of the plane ABC be
x – 2 = y + 1 = z 2 = k, say a(x + 1) + b(y 1) + c(z 2) = 0
Co-ordinate of the point Q are Substituting the co-ordinates of A and B, we get
(k + 2, k 1, k + 2) 2a + b c = 0,
The point Q lies on the plane 2x + y + z = 9 and 3a + c = 0
2(k + 2) + k 1 + k + 2 = 9 a b c
4k + 5 = 9 k=1 1 5 3
Q (3, 0, 3) If is the angle between two planes, then it is
the angle between their normals.
3 2 0 1 3 2
2 2 2
PQ =
51 (1) ( 5) (3) (3)
cos =
= 111 = 3 25 1 9 1 25 9
11. Let A (a, 0, 0), B (0, b, 0), C (0, 0, c) 559
=
a b c 35 35
G (x, y, z) , ,
3 3 3 19
=
a b c 35
= x, = y, = z
3 3 3 19
= cos1
a = 3x, b = 3y, c = 3z ….(i) 35
3
Std. XII : Triumph Maths
13. The equation of the given plane can be written
x y z
as =1
20 15 12
Let the plane intersects the x, y and z axes in the
points A(20, 0, 0), B(0, 15, 0), C(0, 0, 12)
ˆ b 15jˆ , and c 12kˆ
a 20i,
1
Volume of tetrahedron = a b c
6
20 0 0
1
= 0 15 0 = 600 = 600
6
0 0 12
4
Chapter 09: Linear Programming
09 Linear Programming
3. Objective function P = 2x + 3y
The corner points of feasible region are Y
B(12, 12), C(3,3), D(20, 3), E(20, 10), F(18, 12) x = 20
(0,30)
At B = PB = 2 (12) + 3 (12) = 60
xy=0
At C = PC = 2 (3) + 3 (3) = 15
At D = PD = 2 (20) + 3 (3) = 49
B(12,12) F(18,12)
At E = PE = 2 (20) + 3 (10)= 70 y = 12
E(20,10)
At F = PF = 2 (18) + 3 (12) = 72
C(3,3) D(20,3) y=3
P is maximum at F(18, 12). X X
O (30, 0) x + y = 30
4. For (1, 3), 3x + 2y = 3 + 6 > 0, Y
for (5, 0), 3 5 + 0 > 0,
and for (1, 2), 3 + 4 > 0
Similarly, other inequalities satisfies the given points.
Option (D) is the correct answer.
5.
Y
(0,1500)
(0,1000)
B(800,600) x2 = 600
A(0,600) C(1000,500)
(2000,0)
X X
O D(1500,0)
x1 + 2x2 = 2000
Y x1 + x2 = 1500
1
Std. XII : Triumph Maths
OABCD is the feasible region
O(0, 0), A(0, 600), B(800, 600), C(1000, 500), D(1500, 0)
z = x1 + x2
At point C and D, z is maximum. Max z = 1500
Infinite optimal solutions exist along CD.
6. Consider option (C)
3 + 2(4) 11
3(3) + 4(4) ≤ 30
2(3) + 5(4) ≤ 30
All the above three in-equalities hold for point (3, 4).
Option (C) is the correct answer.
7. Let the manufacturer produce x and y bottles of medicines A and B.
3x y
He must have + 66, x + y 45000, x 20000, y 40,000, x 0, y 0.
1000 1000
the number of constraints is 6.
8. Let the company produce x telephones of A type and y telephones of B type.
Constraints are 2x + 4y 800 x + 2y 400, x + y 300
Maximize z = 300x + 400y
Y
(0, 300)
(0, 200)
x + 2y = 400
(400, 0)
X X
O (300,0)
Y x + y = 300
3
Target Publications Pvt. Ltd. Chapter 10: Continuity
10 Continuity
1 cos(1 cos x) a 2 ax x 2 a 2 ax x 2
1. f(0) = lim = lim
x 0 x4 x 0 ax ax
2 x
2sin 2 ax ax a 2 ax x 2 a 2 ax x 2
2sin 2
2 ax ax a 2 ax x 2 a 2 ax x 2
= lim
= lim
x 0 x4 a 2 ax x 2 a 2 ax x 2 a x a x
2
a x a x a ax x a ax x
2 x 0 2 2 2
x x
2sin 2 sin 2 sin 2
2 2
= lim
x 0
x
2
= lim
2ax ax ax
x 4 sin 2 x 0
2 2x a ax x a ax x 2
2 2 2
x
= 2lim
sin 4
2 1 1
4 3 =
a a a
x 0
x 4 2 8 a2 a2
2
2
f(0) = a
2. f is continuous at x = 0.
log(1 x 2 ) log(1 x 2 ) 5 x .2 x 7 x 7 x.2 x 5 x
f (0) = lim 4. lim
x 0
sec x cos x x 0 x
2sin 2
2
2
log(1 x ) log(1 x )
2
= lim = lim
5x (2 x 1) 7 x (2 x 1)
x 0 1 cos 2 x x 0 x
cos x 2sin 2
2
cos x log 1 x 2 log 1 x 2 1 2 x 1 5x 1 7 x 1 1
= lim = lim 2
x 0 sin 2 x
x 0 2 x x x sin x / 2 1
x2 / 4 4
log 1 x 2 log 1 x 2
cos x 5
x2 x2 = 2(log 2) log
7
= lim
x 0
sin 2 x
It is discontinuous at x = 0 and it is removable.
2
x
sin 3 x log 1 3 x
1 1 5. a = lim
= (cos 0) 2 = 2
tan e
2
x0 1
1 x 5 x
1 x
3
3a + b = 6 tan
12
3a + b = 6 .....(ii)
From (i) and (ii), a = 2, b = 0
8. Since, x and | x | are continuous for all x.
x + | x | is continuous for x (– , ).
9. For f(x) to be continuous at x = 0, we must have
lim f(x) = f(0) = lim f(x)
x 0 x 0
2
a=
3
2
Chapter 11: Differentiation
11 Differentiation
x 1 x 1 x 1 x 1
3 5 7
3x
1. y= + + + +… 3. y = f
4 12 20 28 5x 4
x 1 x 1 x 1
3 5 7
1
= x 1 .... dy 3x d 3x
4 3 5 7 = f
dx 5 x 4 dx 5 x 4
x 2 x3 x 4
Now, log(1 + x) = x – + – + …. 5 x 4 3 5 3x
2 3 4 3x
= f
5x 4 5x 4
2 3 2
x x x 4 x5
log(1 – x) = – x – – ….
2 3 4 5
1 x dy 12 5
log = log(1 + x) – log(1 – x) = f
1 x dx x 0 4 16
x3 x5
= 2 x .... 12 5
3 5 = tan2
4 16
x 1 x 1 x 1
3 5 7
x–1+ + + + …. 12 5
3 5 7 = (1)2
16
1 1 x 1
= log 12 5
2 1 x 1 =
16
1 x
= log
2 2 x 4. y = |cos x| + |sin x|
1 x d x
y= log Since, |x| =
8 2 x dx x
1 2 n d x 1 1
5. y = 1 1 …. 1 8. a tan 1 x b log = 4
x x x dx x 1 x 1
dy 1 2 3 n x 1
= 1 1 …. 1 a tan–1 x + b log
dx x 2 x x x
x 1
1 2 3 n
+ 1 2 1 …. 1 1
x x x x =
x 1
4
1 2 3 n 1
+ 1 1 2 …. 1 + ….
x x x x =
1 1
x 2
1 x 2 1
When x = –1, 1 + = 1 + =1–1=0
x 1 1 1 1
= 2 2
2 x 1 x 1
dx
Except 1st term all terms are 0.
dy 1 1 x 1 1 –1
= (–1) (–1) (–2) …. (1 – n) = log – tan x
dx ( x 1) 2 2 x 1 2
= (–1)n (n – 1)! 1 1
a=– ,b=
x 2 4
, x0
f (x) = 1 x
1 1 1 1
6. a – 2b = – – 2 = – – = –1
x , x0 2 4 2 2
1 x
x 9. f(x) = cos x cos 2x cos 4x cos 8x cos 16x
0
f ( x) f (0) 1 16
Lf (0) = lim = lim 1 x =1 = (2 sin x cos x cos 2x cos 4x
x 0 x0 x 0 x 32 sin x
x cos 8x cos 16x)
0
Rf (0) = lim 1 x =1 =
1
16
(sin 2x cos 2x cos 4x cos 8x
x 0 x0 32 sin x
f(x) is differentiable at x = 0 and f (0) = 1.
cos 16x)
7. f(x) = sin(log x) 1 8
1 = (sin 4x cos 4x cos 8x
f (x) = cos(log x) 32 sin x
x
cos 16x)
2x 3
y = f 1 4
3 2x = (sin 8x cos 8x cos 16x)
32 sin x
dy 2x 3 d 2x 3
= f 1 2
dx 3 2 x dx
3 2x = sin 16x cos 16x
32 sin x
2x 3
= cos log sin 32 x
3 2x =
32sin x
3 2 x 2 2 2 x 3 3 2 x 1 sin x 32cos32 x sin 32 x cos x
. f (x) =
3 2x 2 x 3
2
32 sin 2 x
2x 3 6 4x 4x 6 1
= cos log 32 1 0
1 2
3 2x 3 2x f = 2
1 4 32 1
2x 3 2
12 2 x 3 1 1 2
= cos log = 32 2 = = 2
9 4 x2 3 2 x 32 2 2
2
Chapter 11: Differentiation
10. 1 + x4 + x8 = 1 + 2x4 + x8 – x4 dy
= (1 + x4)2 – x4 1 dy x dx y
= (1 + x4 + x2) (1 + x4 – x2) x y = x y 2
2 2
2
x y dx x y
2 2
1 x 4 x8
= 1 – x2 + x4
1 x2 x4 tan 1
y
d 1 x 4 x8 d …. ae x
x2 y 2
4
= (1 – x2 + x4)
dx 1 x x
2
dx
dy dy
= 4x3 – 2x = ax3 + bx x+y =x y ….(ii)
dx dx
a = 4, b = –2
Diff. w.r.t.x, we get
1 1 2
11. 2x = y 5 + y 5 d2 y dy d 2 y d y dy
1+y + = x +
1 dx 2 dx dx 2 dx dx
Let y 5 = a 2
d 2 y dy d2 y
1
1 1 1+y 2
+ =x 2
y = ,
5
a+ = 2x dx dx dx
a a 2 dy 2
d y
a2 – 2ax + 1 = 0 (y x) 2 = 1
dx dx
2x 4x 4 2
a=
2 From (i), when x = 0, y ae 2
1
y 5 = x + x2 1 dy
From (ii), when x = 0, = 1
5 dx
y = x x2 1
d2 y
ae 2 2 = 2
dy 4 1 dx
= 5 x x2 1 1 2x
dx d y
2
2 2
2 x 1
2
2 = e
dx x 0 a
dy
x
4
x2 1 = 5 x x2 1 x2 1
dx f g h
= 5y
2 13. f(x) = f g h
dy
(x – 1) = 25y2
2
f g h
dx
2 f g h f g h
2 2dy d 2 y dy dy
(x 1) 2 + (2x) = 25 2y f (x) = f g h + f g h
dx dx dx dx
f g h f g h
dy
Dividing both sides by 2 , we get
dx f g h
d 2
y d y + f g h
(x2 1) 2 + x = 25y
dx dx f g h
k = 25 =0+0+0
y
tan 1 ….[ f, g, h are polynomials of 2nd degree,
12. x 2 y 2 = ae ….(i) x
f = g = h = 0]
Diff. w.r.t.x, we get =0
1 dy
2x 2 y y y1 y2 cos ax a sin ax a 2 cos ax
2 x2 y 2 dx
14. y3 y4 y5 = a 3 sin ax a 4 cos ax a 5 sin ax
dy
y
tan 1
x 1 x dx y y6 y7 y8 a 6 cos ax a 7 sin ax a 8 cos ax
= ae .
y2 x2 = a2 0 ….[ C1 C3]
1 2
x =0
3
Std. XII : Triumph Maths
4
Chapter 11: Differentiation
21. Let f(x) = px2 + qx + r 1
sin x cos x
f(1) = f(1) p + q + r = p q + r q = 0 f ( x) tan x
=2 x2
f(x) = px2 + r x x
2 sin 2 x 5 x
f (x) = 2px
f (a) = 2ap, f (b) = 2bp and f (c) = 2cp 1 cos x cos x 1 sin x sin x
Since, a, b, c are in A.P. + x sec x 2
x 3
+ x tan x 3x 2
2ap, 2bp, 2cp are in A.P. 2 2cos 2 x 5x 2 sin 2 x 5
12 Applications of Derivatives
10.
2 3
2( x 3) 27 is minimum when x2 3
3
is b
27 f(x) is minimum when tan2x =
minimum. a
Since, (x2 3)3 + 27 Minimum value of f(x) = a (1 + tan2 x)
2
3
Std. XII : Triumph Maths
15. The point of intersection of the given curves is 18. f(x) = x3 12ax2 + 36a2x 4
(0, 1). Diff. w.r.t. x, we get
Now, y = 3x f (x) = 3x2 12a(2x) + 36a2(1)
dy = 3x2 24ax + 36a2
3x log 3
dx Now, f (x) = 0 3x2 24ax + 36a2 = 0
dy x2 8ax + 12a2 = 0
= log 3 = m1 (say)
dx (0,1) (x 2a) (x 6a) = 0
Also, y = 5x x = 2a or x = 6a
dy Also, f (x) = 6x 24a
5x log 5 [f (x)]x=2a = 12a 24a = 12a < 0
dx
[f (x)]x=6a = 36a 24a = 12a > 0
dy
log 5 m 2 (say) Maxima at p = 2a and minima at q = 6a
dx (0,1) 3p = q2 ….(given)
m1 m 2 log3 log 5 3 2a = (6a)2
tan = =
1 m1m 2 1 log 3log5 1
6a = 36a2 a=
2 6
16. Let f(x) = ax + bx + c
f (x) = 2ax + b 19. The functions ex , sin x, cos x are continuous
since, and are roots of the equation and differentiable in their respective domains.
ax2 + bx + c = 0 f(x) is continuous and differentiable
f() = f() = 0 5
Also f = 0 = f
f(x) being a polynomial function in x, 4 4
it is continuous and differentiable. Now,
There exists k in (, ) such that f (k) = 0 f (x) = ex (sin x cos x) + ex (cos x + sin x)
b = ex ( sin x + cos x + cos x + sin x)
2ak + b = 0, k=
2a = 2ex cos x
But k [, ] Also, f (x) = 0 cos x = 0
<k< 5
b x= ,
< < 2 4 4
2a
20. ay2 = x3 ….(i)
17. f(x) = tan1 (sin x + cos x)
Diff. w.r.t.x, we get
1
f (x) = (cos x sin x) dy
1 (sin x cos x)2 2ay = 3x2
dx
dy 3 x 2
2 cos x =
4 dx 2ay
=
1 (sin x cos x ) 2
2ay
For f(x) to be increasing, f (x) > 0 slope of the normal =
3x 2
Since, the normal to the given curve makes
2 cos x > 0
4 equal intercepts with the axis.
2ay
cos x > 0 2 = 1
4 3x
3x 2
<x+ < y=
2 4 2 2a
3 3x 2
<x< Substituting y = in (i) and solving, we get
4 4 2a
4a 8a
f(x) is an increasing function in , . the point , .
2 4 9 27
4
Chapter 13: Integration
13 Integration
5 x10 x
1. Let I = dx 3. Let I = sin 1 dx
x16 ax
Put x = a tan2t
5 x 1
10
dx = 2a tan t sec2t dt
= . dx
x10 x11 a tan 2 t
I = sin 1 2a tan t sec2 t dt
5 1 a a tan 2 t
= x10
1. 11 dx
x = sin 1 (sin t) 2a tan t sec 2 t dt
5 = 2a t tan t sec 2 t dt
Put 1 t
x10
d
5(10)x11 dx = dt = 2a t tan t sec2 t dt (t) tan t sec2 t dt dt
dt
1 1
dx = dt tan 2 t tan 2 t
x11
50 = 2a t. 1. dt
2 2
1
1
I= t 2
dt
50
= a t tan 2 t (sec2 t 1)dt
x
1 t 3/2 = a t tan 2 t tan t t c , where t = tan1
= . +c a
50 3 / 2
x x x x
3/2 = a tan 1 tan 1 +c
1 5
= 1 10 +c a a a a
75 x
4. Let I = cosec x 1 dx
2. Multiplying Nr and Dr by sin 3x, we get 1
cos5 x cos 4 x = sin x
1dx
1 2cos3x dx
1 sin x
=
sin 3 x cos5 x sin 3 x cos 4 x
sin 3x 2sin 3x cos3x dx
= sin x
dx
2 4 4
1
Std. XII : Triumph Maths
1 t2 1
= 2 2
dt I2 = t 4 1 dt
1 1
t 1
2 2 1 2
= t dt
1 1
= log t t 2 t c , where t = sin x t 2
2
2 t
1 1
1 = 1 2 dt
= log sin x + sin 2 x sin x + c 1
2
t
2 t 2
t
1 1
5. Let I = tan x dx = 2 dm , where t + = m
m 2 t
Put tan x = t2 1
t 2
1 m 2 t 1
sec2x dx = 2tdt = log = log
2 2 m 2 2 2 1
t 2
2t t
dx = dt
1 t4 1 t 2 2t 1
= log
2t 2 2 t 2 2t 1
I = t2 .
1 t4
dt
From (i),
t 2 1 t2 1 1 t 2 2t 1
= 2 dt I= tan1 + log +c
1 t4 2 2t 2 2 t 2 2t 1
t2 1 t2 1 1 tan x 1
= t 4 1 dt =
2
tan1
2 tan x
t2 1 t2 1 1 tan x 2 tan x 1
= t 4 1 dt + t 4 1 dt +
2 2
log
tan x 2 tan x 1
+c
= I1 + I2 (say) ….(i)
x 1 x dx
1/ 2
13/ 2 5/ 2
6. Let I =
t 12
I1 = t 4
1
dt
= x .(1 x ) .x dx
5 5/2 1/ 2 3/ 2
1
1 Put 1 x5/2 t
= t 2 dt
1 5 3/2
t2 2 x dx dt,
t 2
1 1 2
x 3/ 2 dx = dt
= 1
2 1 2 dt
t
5
t 2 2
t I = (t 1)2 .t1/ 2 . dt
5
1 1
= y 2
2
dy , where t = y
t
2
= t 5/2 2t 3/2 t1/2 dt
5
1 2 2 4 2
1 y 1 tt = t 7/ 2 t 5/ 2 t 3/ 2 + c, where t = 1 x 5/ 2
5 7 5 3
= tan =1
tan 1
2 2 2 2 2 2
1 x5/ 2 54 1 x5/ 2
7/ 2 5/ 2
=
5 7
1 t2 1 2 3/ 2
=
2
tan 1
2t
3
1 x5/ 2 + c
2
Chapter 13: Integration
tan x 2 2 tan x 1
7. Let I = 1 tan x tan 2
x
dx =
3
tan1
3
+ c1
1
sin 2 x x 1
Put log =t
= 2 dx x 1
1
1 sin 2 x 1 1
2 dx = dt
x 1 x 1
sin 2 x
= dx 1 1
2 sin 2 x dx = dt
x 1
2
2
2 sin 2 x 2
= 2 sin 2 x
dx
1 1 1 x 1
I = t. dt t 2 c = log
2
+c
2 4 4 x 1
2
= 1 dx 1
2 sin 2 x A=
4
= x I1 (say) ….(i)
1
2 9. Let I = dx
I1 = x 2x 2
2
dx 2
2 sin 2 x
1
2
Put tan x = t sec x dx = dt dx =
1
dt
= ( x 1) 2
1
2
dx
1 t2
2 tan x 2t Put x + 1 = tan
sin 2x = =
1 tan x 1 t 2
2 dx = sec2 d
2 1 sec 2
I1 = dt I= d
2t 1 t 2 (tan 2 1) 2
2
1 t2 sec 2 x2 2x 2
1
= sec4 d x+1
= 2 dt
t t 1 = cos 2 d
1
= dt 1
= (1 cos 2)d
1
1 3
t t
2
2
4 4 1 sin 2
= c
=
1
2
dt 2 2
1
2
3 1
t = ( + sin cos ) + c
2 2 2
1 1 x 1 1
1 = tan ( x 1) 2 c
2 t 2 x 2 x 2 x2 2 x 2
= tan1 2+c
1
3 3 1 1 x 1
= tan ( x 1) 2 +c
2 2 x 2 x 2
3
Std. XII : Triumph Maths
1 = b2 ( cos2 x) a2(sin2 x)
10. Let I = dx
cos x sin 6 x
6 1
= b2 cos2x a2sin2x
Since, a3 + b3 = (a + b)3 3ab(a + b) f ( x)
cos6x + sin6x = 1 3 sin2x cos2x 1
f(x) =
….[ a + b = cos2x + sin2x = 1] a sin x b 2 cos 2 x
2 2
1
I = 1 3sin 2 2
dx 12. Let I = esin log (sin ) cosec 2 cos d
x cos x
Put sin = t
1
= 3
dx cos d = dt
1 sin 2 2 x 1
4 I = e t log t 2 dt
t
4
= dx 1 1 1
4 3sin 2 2 x = e t log t 2 dt
t t t
4cosec2 2 x
= 4cosec2 2 x 3 dx 1
= e t log t c
t
4cosec 2 2 x
= 4(1 cot 2 2 x) 3 dx d 1 1 1
…. log t 2
1 dt t t t
= ( 4 cosec2 2x) dx 1
4cot 2 2 x 1 = esin log (sin ) c
Put 2 cot 2x = t sin
4 cosec2 2x dx = dt = esin log(sin ) cosec c
1
I = 2 dt
t 1 cos sin 1 tan
13. log log
= tan1(t) + c cos sin 1 tan
= tan1 (2 cot 2x) + c
log tan
2cos 2 x 2sin 2 x 4
= tan1 +c
2sin x cos x 1
1 Since, sec 2d log tan
= tan (cot x tan x) + c 2 4
= tan1(tan x cot x) + c d
log tan 2sec 2 ….(i)
1 d 4
11. f ( x)sin x cos x dx = 2(b2 a 2 ) log[f ( x)] + c Integrating the given expression by parts, we
d 1 get
log f ( x) c = f(x) sin x cos x
dx 2(b a )
2 2
1 sin 2
I log tan sin 2 2sec 2 d
1 1 4 2 2
f (x) = f(x) sin x cos x
2(b a ) f ( x)
2 2 ….[From (i)]
f ( x ) 1
= 2(b2 a2) sin x cos x sin 2 log tan tan 2 d
[f ( x )] 2 2 4
Integrating on both sides, we get 1 1
= sin 2 log tan – log (sec 2) c
f ( x) 2 4 2
f ( x)2 dx = (b a ) 2sin x cos x dx
2 2
x 4
1 14. Let =t
= (b2 a2) 2sin x cos x dx 3x 4
f ( x)
(3 x 4) (3 x 4) t 1
=
= b 2 2sin x cos x dx a 2 2sin x cos x dx (3 x 4) (3 x 4) t 1
4
Chapter 13: Integration
6x t 1 t2
=
8 t 1 I1 = 1 t2
.2t dt
4 t 1 t2
x= = 2 dt
3 t 1 1 t
4t 4 1 t2 1
x+2= +2 = 2 dt
3t 3 1 t
4t 4 6t 6 2t 10 1
= = = 2 1 t dt
3t 3 3t 3 1 t
x 4 1
Given, f = 2 1 t dt
= x + 2 1 t
3x 4
2t 10 1 t2
f(t) = = 2 log(1 t) t + c1
3t 3 1 2
2 t 5 1
= = 2 log(1 x ) x x + c1
3 t 1 2
From (i),
2 t 1 4
= I = x log (1 x )
3 t 1
1 1
2 4 2 8 .2 log (1 x ) x x + c
= 1 = 2 2
3 t 1 3 3(t 1)
2
f(x) =
8
= (x 1) log 1 x x x c
1
2
3 3( x 1) 3
1
x
16. P(x) = 3 dx, Q(x) = 3 dx
2 8 x x 2
x x2
f ( x)dx = 3 3( x 1) dx x3 1
P(x) + Q(x) = 3 dx
2 8 x x2
= x log|x 1| + c
3 3 x3 x 2 x 2 1
= dx
x3 x 2
15.
Let I = log 1 x dx
= 1 3
x2 1
dx
2
= log 1 x (1)dx x x
=x+I ….(i)
d
= log(1 x ) 1dx log 1 x
dx
1dx dx x 1
I= 2
2
dx
x ( x 1)
1 1 x 2 1
= log(1 x ) .x 1 x dx
x 2 x Put =
A B C
+ + 2
x ( x 1)
2
x 1 x x
1 x x2 + 1 = Ax 2 Bx( x 1) C( x 1) ….(ii)
= x log(1 x ) +
2 1 x
dx
Putting x = 0 in (ii), C = 1
1 Putting x = 1 in (ii), A = 2
= x log(1 x ) + I1 ….(i)
2 Putting x = 1 in (ii), B = 1
x 2 1 1
I = 2 dx
Now, I1 = 1 x
dx
x 1 x x
Put x = t2, 1
= 2 log|x 1| log|x| +
dx = 2t dt x
5
Std. XII : Triumph Maths
From (i), 1 1
1
= 1 2
dt
t
P(x) + Q(x) = x + 2 log|x 1| log|x| + + c 1 4
x t 2
t
(P + Q) (2) = P(2) + Q(2) 1
1
= 2 + 2 log 1 log 2 + + c
= 1 2t 5t 2
dt
2
1 1
5 5
= log 2 + c
5
…. (P Q) (2) =
5
2 1
dt
2 2 2 t t
2
c = log 2 5 5
P(x) + Q(x) = x + 2 log|x 1| log|x| 1 1
1
=–
5
2 1 4
dt
+ + log 2 t t
2
x 5 25 25
1 1 1
P(3) + Q(3) = 3 + 2 log 2 log 3 + + log 2
3
=
5
2 2
dt
1 2
10 8 t
= + log 5 5
3 3
1 1 2t 1
= log t t2 + c
2a sin x bsin 2 x 5 5 5 5
17. Let I = (b a cos x)3
dx
1 1 1 1 2 1
(a b cos x) = log c
= 2 sin x dx 5 x 1 5 ( x 1) 2
5( x 1) 5
(b a cos x)3
Put b + a cos x = t 1 1 1 x2 4
= log +c
a sin x dx = dt 5 x 1 5 5( x 1) 2
1
sin x dx = dt 1 x cos x
19. Let I = dx
a
x 1 xesin x
2
tb
a b
a 1
I = 2 dt esin x (1 x cos x)
= dx
t3 a
xesin x 1 xesin x
2
2 a bt b
2 2
a
= dt
at 3 Put xesin = t
x
7
Std. XII : Triumph Maths
t dt log x
= 25. ( x 1) dx = log x .( x 1) 2 dx
t 2
1 t 1 2 2
x 1
1
1 x 1
1
Put t2 1 = m2
= log x. . dx
2t dt = 2m dm, 1 x 1
t dt = m dm log x 1
mdm = + dx
I = x 1 x( x 1)
m 2 m2
2
log x 1 1
= + dx
1 x 1 x x 1
= dm
2
m2 2 log x
= + log |x| log |x + 1| + c
1 m x 1
= tan 1 c
2 2 26. In = sin n x dx
1 t2 1
= tan1 c = sin n 1 x .sin x dx
2 2
= sinn1x sin x dx
1
1 d
1 sin n 1 x sin x dx dx
2
= tan1 x c
2 2 dx
n1
= sin x( cos x)
1 x2 (n 1)sin n 2 x cos x ( cos x)dx
1
= tan1 +c
2 2 x = sinn1x cos x + (n 1) sin n 2 x cos 2 x dx
1 1 x2 = sinn1x cos x + (n 1) sin n 2 x 1 sin 2 x dx
= cot 1 + c
2 2
2x
= sinn1x cos x + (n 1) sin n 2 x sin n x dx
1 1
2x = sinn1x cos x + (n 1) sin n 2 x dx
= tan + c
2 2 1 x
2
(n 1) sin n x dx
1 2x In = sinn1 x cos x + (n 1) In2 (n 1) In
= tan1 +c
2 1 x
2
2 2 In + (n 1)In (n 1)In 2 = sinn 1 x cos x
nIn (n 1) In 2 = sinn1x cos x
x2 1
24. Let I = dx 27. u = f () sin + f () cos
x3 2 x 4 2 x 2 1 du
Dividing Nr and Dr by x5, we get = f () sin f () cos
d
1 1 + f () cos f () sin
3 5
x x
I= dx = f () sin f () sin
2 1 v = f () cos + f () sin
2 2 4
x x dv
= f () sin + f () cos
2 1 4 4 d
Put 2 2 4 t 3 5 dx dt
x x x x + f () cos + f () sin
1 dt 1 = f () cos + f () cos
I= t c 2 2
4 t 2 du dv 2
+ = [ f () sin f () sin ]
1 2 1
d d
= 2 2 4 c
2 x x + [f () cos + f () cos ]2
8
Chapter 13: Integration
= [f ()]2 sin2 + 2 f () f () sin2 sin x cos x
+ [f ()]2 sin2 + [f ()]2 cos2
= 2 1 1 2sin x cos x
dx
x2 1
= (x 2
2 x 1) x3 x 2 x
dx
1
1
= x2 dx
1 1
x 2 x 1
x x
1
Put x + 1 = t2
x
1
1 2 dx = 2t dt
x
2t
I = dt
(t 1) t 2
2
1
= 2 dt
t 1 2
= 2 tan1 t + c
1
= 2 tan1 x 1 + c
x
sin x cos x
= 2 1 1 2sin x cos x
dx
9
Target Publications Pvt. Ltd. Chapter 14: Definite Integrals
14 Definite Integrals
1 3
log(1 x) 1
1. Let I = 0 1 x 2 dx 3. Let I = 1 2
0
f (x)
dx …. (i)
3
1
4
= log(1 tan t) dt
= 1 2
0
f ( x)
dx
0
….[ f(x) + f(3 x) = 0 (given)]
4
= log 1 tan t dt
4 3
2f ( x )
0 2f ( x ) 1 dx
0
I= …. (ii)
1 tan t
4
= log 1 dt
0 1 tan t Adding (i) and (ii), we get
3 3
1 2f ( x )
0 1 2f ( x ) dx + 0 2f ( x ) 1 dx
4
2 2I =
= log dt
0 1 tan t
3 3
1 2f ( x )
4
= [log 2 log(1 tan t)]dt
= 0 1 2f ( x ) dx = 0 1dx = 3
0
3
4 I=
2
I = (log 2)dt I
0
x log x
2I = log2 t 0
/ 4
log 2
4
4. Let I = (1 x
0
2 2
)
dx
1
x log x x log x
I= log 2
8 = 0 (1 x 2 )2 dx 1 (1 x 2 )2 dx
5 1 2 3 = I1 + I2 (Say) ….(i)
2. f ( x ) dx = f ( x ) dx + f ( x ) dx + f ( x ) dx
x log x
0 0 1
4
2
5
I2 = (1 x
0
2 2
)
dx
+ f ( x ) dx + f ( x ) dx
1
3 4 Put x =
2 3 4 5 y
= 0 + 12 dx 22 dx 32 dx 42 dx
1
1 2 3 4 dx = dy
= 1(2 1) + 4(3 2) + 9(4 3) + 16(5 4) y2
= 1 + 4 + 9 + 16 = 30 When x = 1, y = 1 and when x , y 0
1
Std. XII : Triumph Maths
1 1 1
0
y
log
y 1 dy
7. Let I = ( x )( x)
dx
I2 = 2 2
/ 2
= 4 cos x dx = 4 =
2
4 = 2 0
/ 2
0
2
sin 2 3x
I3 =
0 sin 2 x
dx =
/ 2
(3sin x 4sin 3 x) 2 ex 1
=
0
sin 2 x
dx 8. Let h(x) = x3f(x) = x3 x
e 1
/ 2
e x 1 3 1 e
x
(9 24sin x 16sin 4 x)dx
2
= h(x) = (x)3 x = x
x
0 e 1 1 e
9 3.1 3
= 24. + 16. . = ex 1
2 4 4.2 2 2 = x3 x
3 e 1
I1+I3 = 2 2I 2
2 2 h(x) = h(x)
I1, I2, I3 are in A.P. h(x) is an even function.
2
Chapter 14: Definite Integrals
1 1 1 b
t f (t)dt = h(t)dt = 2 h(t)dt
3
11. Let I = f ( x)dx
1 1 0 a
1
Put x = (b a)t + a
= 2 t 3f (t)dt
0 dx = (b a)dt
1
When x = a, t = 0 and when x = b, t = 1
= 2 x 3f ( x)dx 1
0
I = f (b a)t a (b a)dt
1 3 0
= 2 …. x f ( x)dx 1
0 = (b a) f (b a)t a dt
1 0
9. f(m, n) = (log x) m x n 1dx 1
0 = (b a) f (b a) x a dx
1
1 d 0
= (log x)m x n 1dx (log x) m x n 1dx dx
0 dx 0 =ba
1
xn
1
1 xn 12. If 0 x < 1, then 0 x2 < 1, [x2] = 0
= (log x) m m(log x) m 1 dx
n 0 0 x n If 1 x < 2 , then 1 x2 < 2, [x2] = 1
1
m If 2 x 1.5, then 2 x2 2.25, [x2] = 2
n 0
=00 (log x) m 1 x n 1dx ….[ log 1 = 0]
1.5 1 2 1.5
x dx = x dx + x 2 dx + x dx
2 2 2
m
= f(m 1, n) 0 0 1 2
n
1 2 1.5
x
= 0dx + 1dx + 2dx
10. (x) = (4sin t 3cos t)dt
7
0 1 2
= 0 + x 1 2 x
6 2 1.5
7 4 = 2 1 + 2 (1.5 – 2 )
If x , ,
6 3 = 2 – 1 + 3 2 2
then x is in the third quadrant.
=2 2
sin x and cos x are both negative.
(x) = 4 sin x + 3cos x < 0 1
13. f + x2f(x) = 0 ….(given)
7 4 x
(x) is decreasing on the interval ,
6 3 1 1
7 4 f(x) = 2 f
Minimum (least) value of (x) on , x x
6 3 sec sec
1 1
4
4 /3
is = (4sin t 3cos t)dt
Let I =
cos
f ( x)dx =
cos
f dx
x2 x
3 7 /6
1 1
= 4cos t 3sin t 7 /6
4 /3
Put t , 2 dx = dt
x x
4 7 4 7 When x = cos , t = sec
= 4 cos cos 3 sin sin
3 6 3 6 and when x = sec , t = cos
cos sec sec
1 3 3 1
= 4 3 I= f (t)dt f (t)dt = f ( x)dx = I
2 2 2 2 sec cos cos
I +I=0
=
7 1 3 2I = 0
2 I=0
3
Std. XII : Triumph Maths
1 n n f ( x)
14. lim 1 16. f ( x) f ( x) 1
n n n 1 n2 f ( x)
Integrating on both sides, we get
n n
... log f ( x) x log c f ( x) ce x
n3 n 3(n 1)
f(0) = c c = 1
f(x) = ex
= lim
1 1
1
1
...
1
Now, f(x) + g(x) = x2
n n 0 1 2 3(n 1) g(x) = x2 ex
1
1 n 1 1
n
n n 1 1
f ( x) g( x) dx = e ( x 2 e x ) dx
x
1 3(n 1) 1
= lim 0 0
n n r 1 1
r 0
1
x e e
2 x 2x
n = dx
0 0
3
1 1
= dx e2 x
1 x = x 2 e x 2 xe x 2e x
0
2 0
3
= 2 1 x 1 2 3
0 =e e
= 2 1 3 1 0 100
2 2
4n
n 200
15. lim 2
(| sin 3 x | | cos3 x |) dx
2
n
r 1 r 3 r 4 n =
0
4n
1 1 1
= lim 2
n 0
n | sin 3 x | | cos3 x |is a periodic
....
4n
1 1 1
= lim 2 function with period
r 1 n r r
n
2
n 3 n 4
2
4 I = 200 (sin 3 x cos3 x) dx
1
= dx 0
2
0 x 3 x 4 2
2
= 200 sin x dx + cos x dx
3 3
Put 3 x + 4 = t
0 0
1
3. dx = dt = 200[I1 + I2] (Say) ….(i)
2 x
1 2 2
dx = dt Where I1 = sin 3 x dx
x 3 0
When x = 0, t = 4 and when x = 4, t = 10
2
10
= (1 cos 2 x)( sin x) dx
10
1 2 2 1
I= 4 t 2 3 dt = 3 t 4 0
sin
3
1 I3 = x dx = 0
= (1 t 2 )dt
0 2
1
t3 1 2 ….[ sin3x is an odd function]
= t = 1– =
3 0 3 3 1
1 x
I4 = log dx
2
2
0 x
I2 = cos3 x dx = cos3 x dx
2 1
11 x
= log
0 0
dx
2 0 1 x
2
= sin 3 x dx = I1 =
3 a a
0 …. f ( x) dx f (a x) dx
From (i), 0 0
2 2 800 1
x
I = 200 = = log
3 3 3 dx
0 1 x
1
sin x cos x
2
1 x
18. I1 = dx = log dx
0
1 sin x cos x 0 x
I4 = I4 2I4 = 0
cos x sin x
2
= dx I4 = 0
0
1 sin x cos x
I1 = I3 = I4 = 0, but I2 0
2
2
.... f ( x) dx = f x dx 2
x sin 2n x
0 0 2
19. Let I = 0 sin 2n x cos2n x dx
2
sin x cos x
2 (2 x)sin 2n (2 x)
= dx = I1 = 0 sin 2n (2 x) cos2n (2 x) dx
0
1 sin x cos x
2
2I1 = 0 I1= 0 sin 2n x
2 = 2 dx I
sin x cos 2n x
2n
cos
6
I2 = x dx 0
0
sin 2n x
= 2 cos 6 x dx
I=2 0 sin 2n x cos2n x dx
0
sin 2n x
6
….[ cos x is a periodic f with period ] n
is a periodic f n with period
sin x cos x
2n 2n
2
= 2 (cos 6 x + cos6 ( x)) dx 2
sin 2n x
= 4 dx
0
0 sin
2n
x cos 2n x
2a a
…. f ( x)dx [f ( x) f (2a x)]dx 2a a
0 0
f ( x )d x 2 f ( x)dx,
.… 0 0
2 if f (2a x) f ( x)
= 2.2 cos 6 x dx
0
= 4
6 1 6 3 6 5 5 4
= 4. . =
6 6 2 6 4 2 8 = 2
5
Std. XII : Triumph Maths
x
4
bsin x 22. f(x) = sin 6 tdt
20. a | sin x | 1 cos x c dx = 0 0
x+ x+
4
f(x + ) = sin 6 tdt = sin 6 tdt + sin
6
i.e., I1 + I2 + I3 = 0 tdt
0 0
4 x
I1 = a | sin x | dx = f() + sin 6 (u )du , where t = u +
0
4
x
0
4
= f() + sin 6 u du
= a | sin x | dx | sin x | dx 0
4 0
x
= f() + sin 6 tdt = f() + f(x)
0
4
0
= a ( sin x) dx sin x dx f( + x) = f() + f(x)
4 0
23. Let f(x) = ax2 + bx + c
= a cos x /4 cos x 0
0 / 4
f (x) = 2ax + b
= a 1
1
2
1
2
1 = a 2 2
f (x) = 2a
f(0) = c = 3
4
f (0) = b = –7
bsin x
I2 = 1 cos x dx
f (0) = 2a = 8
4 a=4
= b log |1 cos x | / 4
/4 f(x) = 4x2 – 7x + 3
2 2
f ( x)dx = (4 x 7 x 3)dx
2
=0 …. cos cos
4 4 1 1
2
4 x3 7 x 2
c
4
= 3x
I3 = c 1dx = c 3 2 1
4 4 2
4 32 4 7
= 14 6 3
I1 + I2 + I3 = 0 becomes 3 3 2
c
a 2 2 + = 0
2
….[ I2 = 0]
=
32 42 18 8 21 18
The given equation is a relation between a and c. 3 6
8 5 16 5 11
log = =
2xe
2
2 x2
3 6 6 6
21. Let I = 0
cos e x dx
1
2A
x2
Put e = t 2 xe dx = dt x2 24. f ( x ) dx
0
When x = 0, t = e0 = 1
1
x 2A
When x = log , t = elog /2
2 2
A sin 2 B dx
0
1
2 2A x 2A
I = cos tdt = sin t 1
/2
cos Bx
1
2 0
2A 2A
= sin sin 1 = 1 – sin1 B B=0
2
6
Chapter 14: Definite Integrals
7 3
= sinx (3 4 sin2x) 6 2
[2sin x]dx [2sin x]dx
= 3sinx 4 sin3x 7
= sin 3x 6
5 7 3
6 6 2
2 2
f ( x)dx = sin 3x dx
= (1)dx (0)dx (1)dx (2)dx
5 7
0 0 2 6 6
1 5 7 3 7
cos3x 0
/2
= = 0 2
3 6 2 6 2 6
1 3 2 4
= cos cos 0 =
3 2 6 6 6 2
12 3 2 2
= a (1) (1) 0 a(0 1) 20(1 0) f ( x)dx (sin x cos5 x) dx
2
12 4 0 0
3 1 1 4.2
= a2 + a 20
4 12 2 2 5.3.1
2a 2 8
= + a 20 =
3 4 15
7
Std. XII : Triumph Maths
a
1 3 1
29.
a 2 1
x 1 dx < 4
x
a
1 3 x 3/ 2
. 3 +x 2 x 4
a 2
2 1
1
a a 1 a 1 2 a 2 4
a
a+ a2<4
a+ a 6<0
a 3 a 2 <0
3 < a < 2
But a cannot be negative and according to
the problem, a 0
0< a <2
0<a<4
4 3 4 3
3esin x 3x 2 esin x
30. Let I = 1 x dx = 1 x3 dx
Put x 3 t 3 x 2 dx dt
64
esin t
I = 1 t dt
64
esin x
= 1 x dx
d esin x
= [f ( x)]164
…. dx [f ( x )]
x
= f(64) f(1)
k = 64
8
Chapter 15: Applications of Definite Integral
15 Applications of Definite Integral
3. Y
1. Y
x=– x=
y=x+1 y = 5 x2
(1, 2)
X X (2, 1)
O
Y X X
(1, 0) O (1, 0) (2, 0)
Required area = | sin x | dx
0 Y
= | sin x | dx | sin x | dx 2 1
0
0
Required area =
1
5 x 2 dx – (1 x) dx
1
= sin x dx sin x dx 2
0
( x 1) dx
= cos x cos x 0
0
1
2 1
= cos0 cos() (cos cos0) x 5 x x2
= 5 x 2 sin 1 x
= 1 (1) ( 1 1) 2 2 5 1 2 1
= 1 + 1 (2) = 4 sq. units 2
x2
2. Y Y x
2 1
y=
2
y = sin1x
5 1 2 1 5 1
O =1+ sin 2 sin 1
X X 2 5 2 2 5
1 1 1
y=
2 1 1 2 2 1
x=0 2 2 2
Y 5 2 5 1 1
1
= 1 + sin1 + 1 + sin1 2 –
y = sin x 2 5 2 5 2
x = sin y 5 1 2 1 1
= sin sin 1
2 2 5 5 2
Required area = 2 x dy
0 5 2 2 1
= sin 1 cos 1
2 5 5 2
2
= 2 sin y dy
…. sin 1 x cos 1 1 x 2
0
= 2 cos y 0
/ 2
5 1 5 1
= sq.unit
= 2(0 1) = 2 sq.units 2 2 2 4 2
1
Std. XII : Triumph Maths
4. Y x2
5/ 2
= 2 x 2
5/2
2 2
5/ 2
B(0,1) x 3 1 1 x 3
y=x–1 y=x–1 + 1 ( x 3) sin
2
2 2 1 2
X X 1
(–1, 0) O A(1,0)
1 25 5 2 1
= 4 2 2 + 1
y=x+1 y = – x +1 2 4 2 2 4
(0, –1)
1 1 1 1
Y + sin–1 0 sin (1)
2 2 2
Required area = 4 (area of OAB)
9 1 3 1 1
= 1
1 8 4 2 2 6 2 2
= 4 y dx
1 3
0
=
8 8 4 12
1
= 4 x 1dx 3 1
= sq.unit
0
6 8
1
x2
=4 x = 2 sq. units 6. The point of intersection of the curve y = 2x x2
2 0 and the line y = x are (0, 0) and (3, 3).
Y
x = 5/2 y = x
x=2 (3, –3)
(x3)2 + (y2)2=1 y = 2x – x 2
Y
(2, 2) Required area
(3, 2)
3
= [(2 x x 2 ) ( x)]dx
0
X O X 3
= (3 x x 2 ) dx
Y 0
3
Required area 3x 2 x3
=
5 5 2 3 0
2 2
= x dx 2 1 ( x 3) 2 dx
=
9
sq. unit
2 2 2
2
Chapter 15: Applications of Definite Integral
7. Y 1 1 1 1 1 1
= (0 + 1)
2 2 2 2 2 2
(0, 1) 1 1
+ (1) + 0
2 2
y = cos x
= 2 1+ 2 + 2 –1 + 2
X X
O
,0
2
,0
2
= 4 2 2 sq.unit
x = 1 x=1
9.
Y Y
2
|x| = 1 x = 1 or x = 1 y=x +2
1
Required Area = cos x dx
1
y=x
1
= 2 cos x dx (0, 2)
0
4 2 = 2x
X
O
X 3 2 0
4 9
=9+6 0
2
Y 21
= sq. unit
2
Required area
3 10. Y
2
2
x=2–y–y
= | cos x sin x | dx
0
1
5
4 4
X X
= (cos x sin x)dx + (sin x cos x)dx O
0
4
3
2
+ (cos x sin x)dx –2
5
4
Y
= sin x cos x 0 cos x sin x / 4
/ 4 5 /4
Y
O X
(1, 0) (5, 0) dy
y = x2 + x + 1 = 2x + 1
dx
dy
= 2(1) + 1 = 2 + 1 = 3
dx (1,3)
Y
4a
y2 The equation of the tangent at the point (1, 3)
Required area = 0 4a 2 1 1 dy is y 3 = 3(x 1) i.e., y = 3x.
It passes through origin.
4a
4a
y 2
1 y 3
Required area
= 2
dy = = area of the region OABCO + area of the
0
4a 4a 2 3 0
region OCDO
1 1 0 1
= (64a3 – 0)
2
4a 3 = y dx ( y
1 0
1 y 2 ) dx
16a 0 1
= sq. units
( x x 1) dx ( x x 1 3x)dx
2 2
3 =
1 0
12. Y 0 1
(x x 1) dx ( x 2 2 x 1) dx
2
=
1 0
y2 = x + 1 (0, 1) y2 = x + 1 0 1
x x 3
x3 2
= x x2 x
3 2 1 3 0
1 1 1
= 0 1 1 1 0
X X 3 2 3
(–1, 0) O (1, 0)
4 1 1
=
3 2 3
83 2
=
(0, –1) 6
7
= sq. unit
Y 6
4
Chapter 15: Applications of Definite Integral
14. Y 3 1 3 8 3 3
2
4y = 3x =2 sin 1 0 0
2 4 2 3 3 8
3 3 8 3 3 2 2 3 3
x2 + 4y2 = 4 A 1, = 2 =
2 4 3 9 8 3 4 3
X O X 2 2 3
=
3 12
B 2 1
= sq. unit
3 3 2 3
1,
2 Y
15.
y = x2 + x
Y
The equation x2 + 4y2 = 4 is of ellipse with
centre at origin and the equation 4y2 = 3x is of
a parabola with vertex at origin. x=1
Solving the equations, we get x2 + 3x 4 = 0
(x + 4)(x 1) = 0 X X
O 1
But x = 4 is not possible, since both points
of intersection lie on the right hand side of
Y-axis.
3 Y
x = 1 and y = ±
2 dy
Slope of tangent = = 2x + 1
3 dx
The points of intersection are A 1, and y = (2 x 1)dx = x2 + x + c
2
The curve passes through the point (1, 2).
3
B 1, . 2 = 12 + 1 + c
2 c=0
Required area The equation of the curve is y = x2 + x, which
3 is a parabola as shown in the figure.
2 1
1
x3 x 2
= x2 x1 dy Required area = ( x x)dx =
2
3 0 3 2 0
2
1 1
3 = 0
2
4 y2 3 2
2
= 4 4 y dy 5
3
3 = sq. unit
2 6
3
16. Draw AP to X-axis.
2
4 y2
= 2 4 4 y2 dy 1 a3
3 A1 = A(OAP) = a a2 =
0 2 2
….[ the function is even] A2 = Area bounded the curve OA and the lines
3 3
OP and AP
a
2
8 2 a a
x3 a3
= 4 1 y dy y 2 dy
2
= y dx = x dx =
2
0
30 0 0 3 0 3
3 3 Required area = A1 A2
2 8y 2
3
y 1 a3 a3 a3
= 4 1 y 2 sin 1 ( y ) = sq. unit
2 2 0 3 3 0 2 3 6
5
Std. XII : Triumph Maths
17. Y
3
y = sin1x
required area = x
0
1 x2 dy
3
= ( y 2) 2 1 (2 y 4) dy
0
1 3
0, C B ,
y 6 y 9 dy
2
4 =
2 4
0
X O X y3
3
1 = 3y2 9 y
A ,0
2 3 0
= 9 – 27 + 27 – 0
Y = 9 sq. units
Required area
= area of the rectangle OABC 1 sin x4
1 sin x
area of the region OBCO 19. Required area = dx
0
cos x cos x
1 4 1 sin x 1 sin x
cos y 0
/ 4
= sin y dy = …. 0
4 2 0 4 2 cos x cos x
1 2 2
= 1 sq. units
4
cos x sin x
cos
x
sin
x
4 2 2 =
2 2
2 2
x x x x dx
0 cos 2 sin 2 cos 2 sin 2
18. Y 2 2 2 2
(y –2)2 = x – 1
x x x x
(2, 3) cos sin
4 cos sin
= 2 2 2 2 dx
x x x x
cos 2 sin 2 cos sin
0
2 2
x –2y + 4 = 0
x x
1 tan
4 1 tan
X X = 2 2 dx
Q O R
x x
(–4, 0) (5, 0) 0
1 tan 2 1 tan
2
Y x x x
4 1 tan 1 tan 4 2 tan
The equation of the parabola is = 2 2 dx = 2 dx
(y 2)2 = x 1 2 x 2 x
0
1 tan 0
1 tan
Diff. w.r.t. x, we get 2 2
dy x 1 x
2(y 2) =1 Put tan = t sec2 dx = dt
dx 2 2 2
dy 1 tan
= 8
4t
dx 2( y 2) required area = dt
dy 1 1
0 1 t 2
1 t2
2 1
dx (2,3) 2(3 2) 2 4t
= (1 t 2 ) 1 t 2
dt
1 0
Equation of tangent is y 3 = (x 2)
2
…. tan 2 1
2y 6 = x 2 8
x 2y + 4 = 0
It cuts the X-axis at the point Q (4, 0) and the
parabola cuts the X-axis at the point R(5, 0).
6
Chapter 16: Differential Equations
16 Differential Equations
cot
2
=a
4.
1 x2 1 y 2 A x 1 y 2 y 1 x2
= 2 cot1 a Put x = tan , y = tan
sin1 x2 sin1 y2 = 2 cot1 a The equation becomes
Differentiating w.r.t. x, we get sec + sec = A (tan sec tan sec )
1 1 dy
2x 2y 0 1 1 sin 1 sin 1
1 x 4
1 y 4 dx A
cos cos cos cos cos cos
dy x 1 y 4
cos cos sin sin
dx y 1 x 4 A
cos cos cos cos
Degree and order are both 1.
cos + cos = A (sin sin )
2. Since, the given differential equation cannot
be expressed as a polynomial in differential
2 cos cos
coefficients, so its degree is not defined. 2 2
dx dy dy 1 y 2
2x = x y and 2y = y x
dy dx dx 1 x 2
dx dy Degree and order of the differential equation
x+y = 0 and y + x = 0
dy dx are both 1.
1
Std. XII : Triumph Maths
y 2 1
f y.e x = 6
dy y x 1
x
5.
dx x y 1 6 x 6 6x 5
f = =
x x 1 x 1
Put y = vx 6 x 5 x2
y = f(x) = e
dy dv x 1
=v+x
dx dx dy x 2 y 2 1
The given equation becomes, 8.
dx 2 xy
dv f (v)
v+x =v+ 2xydy = (x2 + 1) dx + y2 dx
dx f (v)
2xydy y2dx = (x2 + 1) dx
1 f (v) Dividing by x2, we get
dx = dv
x f (v) 2 xydy y 2dx x 2 1
= 2 dx
Integrating on both sides, we get x2 x
log x = log f(v) + log K
y2 1
x = f(v)K d = 1 2 dx
y x x
x = Kf Integrating both sides, we get
x
y2 1
y 1 1 = x c
f = x = cx, where c = x x
x K K
2 2
y = x 1 + cx
dy When x = 1, y = 0, c = 0
6. The given equation is f ( x) y = f ( x)f ( x) the required solution is y2 = x2 1
dx
i.e., x2 y2 = 1, which is the equation of a
I.F. = e
f ( x ) dx
ef ( x ) hyperbola.
the required solution is x dy y dx
9. x dx + y dy + 0
y.ef (x) = ef ( x ) .f ( x)f ( x)dx x2 y2
= e t .t dt , where f(x) = t 1 1 xdy ydx
(2xdx + 2ydy) + = 0
2 y 2 x2
= t.e t e t .dt 1 2
x
= tet et + c 1 y
d ( x 2 y 2 ) d tan 1 = 0
y.ef (x) = f(x) ef (x) ef (x) + c 2 x
y = f(x) 1 + cef (x) Integrating both sides, we get
7. The given equation is 1 2 y c
( x y 2 ) tan 1
2 2 x 2
ex
(x + 1) f (x) 2(x2 + x) f(x) = y
x 1 x2 + y2 + 2 tan1 = c
If y = f(x), the equation is x
2 y
dy ex 2 tan1 = c x2 y2
2 xy = , which is a linear equation x
dx ( x 1) 2
y cx y
2 2
I.F. = e
2 x dx
e x
2 tan1 =
x 2
the required solution is
y c x2 y 2
2 1 1 = tan
y.e x = dx + c = c x 2
( x 1) 2
x 1
When x = 0, y = 5
c x2 y 2
y = x tan
c=6 2
2
Chapter 16: Differential Equations
dy 1 dy 1
10. 2x2y = tan (x2y2) 2xy2 tan x = sec x
dx y 2 dx y
dy 1 1 dy dt
x2.2y + y2.2x = tan (x2y2) Put = t, 2
dx y y dx dx
d 2 2
(x y ) = tan (x2y2) The equation becomes,
dx
dt
dz (tan x) t = sec x, which is linear equation.
= tan z, where z = x2y2 dx
dx
I.F. = e
tan x dx
dx = cot zdz
Integrating both sides, we get = e log (sec x ) = sec x
x = log (sin z) + c x = log(sin x2y2) + c the required solution is
t sec x = sec2 x dx c
When x = 1, y = , z=
2 2
1
1 = log 1 + c, c = 1 sec x = tan x + c
y
the required solution is
x = log (sin x2y2) + 1 sec x = y (c + tan x)
log (sin x2y2) = x 1 dy
sin (x2y2) = ex 1 13. (xy x2) = y2
dx
dy dx
11. x3 + 4x2 tan y = ex sec y y2 = xy x2
dx dy
Dividing by x3 sec y, we get Dividing by x2y2, we get
1 dy 4 tan y ex 1 dx 1 1 1
= 3 =
sec y dx x sec y x x 2 dy x y y 2
dy 1 ex 1 dx 1 1 1
cos y + (4 sin y). = 3
dx x x x 2 dy x y y 2
dy dt
Put sin y = t, cos y = 1
dx dx Put t
x
the equation becomes,
1 dx dt
dt 4 ex 2 =
t 3 , which is a linear equation x dy d y
dx x x
4
The equation becomes
x dx log x 4 dt 1 1
I.F. = e e e
4 log x
x 4
t 2 , which is a linear equation
the required solution is dy y y
tx4 = e x . x dx dy
1
I.F. = e y = elog y = y
tx4 = xex ex + c the required solution is
sin y.x4 = xex ex + c
1
When x = 1, y = 0 ty = dy + c
y
c=0
sin y.x4 = xex ex ty = log y + c
sin y = (x 1) ex.x4 y
= log y + c
x
dy
12. We have, = y tan x y2 sec x y = x (log y + c)
dx
The curve passes through the point (1, 1).
1 dy 1
= tan x sec x 1 = 1(0 + c), c = 1
y 2 dx y the required solution is y = x (log y 1).
3
Std. XII : Triumph Maths
dy the equation becomes,
14. = exy (1 ey)
dx dv vx v
v+x = =
dy dx x vx 1 v
ey = ex (1 ey) dv v
dx x = v
dx 1 v
dy
ey = ex ex.ey v v v2
dx =
1 v
dy
ey + e x e y = ex 1 v 1
dx 2
dv = dx
v x
dy dt Integrating both sides, we get
Put e y = t, e y
dx dx 2 1 1
The given equation becomes v v dv x dx + c
dt 1
e x .t e x , which is a linear equation. log v = log x + c
dx v
x dx x y
I.F. = e
x
e
ee log = log x + c
y x
the required solution is
x
x x log y + log x = log x + c
t.ee = ee .e x dx y
x
= e z .dz , where ex = z log y = c
y
= ez + c This curve passes through (1, 1).
t.ee
x x
= ee c c = 1
x
x
e y .e e e e c
x log y = 1
y
x
15. The equation of the tangent to the curve + log y = 1
y = f(x) at P (x, y) is y
dy x
Yy= (X x) log y = 1
dx y
x x
1
dx y= e y
= e.e y
This meets the X-axis at x y ,0 .
dy x
yey = e
According to the given condition,
y dy 1 y 2
x =y 16. =
dy dx y
dx
y
xy=
y 1 y 2
dy = 1dx
dy
dx 1 y2 = x + c
dy y (x + c)2 = 1 y2
= , which is a homogeneous d.E.
dx x y (x + c)2 + y2 = 1
Put y = vx Radius is fixed, which is 1 and the centre is
dy dv (c, 0) which is a variable centre on the
=v+x
dx dx X-axis.
4
Chapter 16: Differential Equations
= t x log ty e y x
ty dy 2
m1 = = 2 (slope of tangent to the
dx x
x
tan v = log x + c
y
tan = log x + c ….(iv)
x
Since, the required curve passes through 1, .
4
tan = log 1 + c c = 1
4
y
tan = log x + 1 ….[From (iv)]
x
y
tan = log x + log e
x
e
y = x tan1 log
x
7
Target Publications Pvt. Ltd. Chapter 17: Probability Distribution
17 Probability Distribution
1. Given, 1 3p 1 p
P(X= 3) = 2P(X= 1) and P(X= 2) = 0.3 ….(i) i.e., 0 1, 0 1,
4 4
Now, mean = 1.3
1 2p 1 4p
0 P(X = 0) + 1 P(X = 1) + 2 P(X = 2) 0 1 and 0 1
4 4
+ 3 P(X = 3) = 1.3
1 1
7P(X = 1) = 0.7 ….[From (i)] p
3 4
P(X = 1) = 0.1
Also, P(X = 0) + P(X = 1) + P(X = 2) 1 3p 1 p 1 2p
Mean(X) = 1 +0 +1
+ P(X = 3) = 1 4 4 4
P(X = 0) + 3P(X = 1) = 0.7 1 4p
+2
….[From (i)] 4
P(X = 0) + 0.3 = 0.7 2 9p
=
P(X = 0) = 0.4 4
8
1 1
2. P(X x) 1
x 0
Now, p
3 4
a + 3a + 5a + 7a + 9a + 11a + 13a 9
3 ≥ 9p
+ 15a + 17a = 1 4
81a = 1 1
2 9p 5
1 4
a=
81
1 2 9p 5
3. P(E) = P(X = 2 or X = 3 or X = 5 or X = 7) 16 4 4
= P(X = 2) +P(X = 3) +P(X = 5)+P(X= 7)
2
= 0.23 + 0.12 + 0.20 + 0.07 = 0.62 x x2
2
5. P(X > 1.5) = dx = = 0.4375
P(F) = P(X < 4) 1.5
2 4 1.5
= P(X = 1) + P(X = 2) + P(X = 3)
2
= 0.15 + 0.23 + 0.12 = 0.50 x x2
2
and P(X > 1) = dx = = 0.75
P(E F) = P(X is a prime number less than 4) 1
2 4 1
= P(X = 2) + P(X = 3)
X 1.5 P(X 1.5) 0.4375 7
= 0.23 + 0.12 = 0.35 P
X 1 P(X 1) 0.75 12
P(E F) = P(E) + P(F) P(E F)
= 0.62 + 0.50 0.35 = 0.77 6. P(X = xi) = ki, where 1 i 10
4. Here,
1 3p 1 p 1 2p
, , and
1 4p
are
P(X x ) 1 i
4 4 4 4
probabilities when X takes values 1, 0, 1 and (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)k = 1
2 respectively. Therefore, each is greater than 1
k=
or equal to 0 and less than or equal to 1. 55
1
Std. XII : Triumph Maths
7. We have, P(X x) 1
x 0
x
1
k ( x+ 1) 1
x 0 5
1 1
2
1
3
k 1 2 3 4 .... = 1
5 5 5
1
1
1 5 =1
k
1 1 2
1 5 1
5
a (a d) r (a 2d) r 2 ....
…. a dr
1 r (1 r) 2
5 5
k = 1
4 16
25k
=1
16
16
k=
25
2
Target Publications Pvt. Ltd. Chapter 18: Binomial Distribution
18 Binomial Distribution
10 1 3 1
1. We have, p = = 4. Here p = =
100 10 6 2
1 9 1 1
q=1– = and q = 1 p = 1 =
10 10 2 2
According to the given condition, n = 100
50
P(X 1) 1 1
100 variance = npq = 100 = 25
2 2
1
1 – P(X = 0)
2 5. Here n = 8,
1 2 1
P(X = 0) p = Probability of getting 1 or 3 = =
2 6 3
n
9 1 1 2
, q=1 =
10 2 3 3
which is possible if n is at least 7.
1 2 16 4
n=7 S.D. = npq = 8 = =
3 3 9 3
2. P(X = 1) = 8 . P(X = 3), if n = 5
5 C1q 4 p1 = 8. 5 C3q 2 p3 6. Let X denote the number of failures in 5 trials.
Then, P(X = r) = 5Cr (1 p)r p5r ; r = 0,1,2,...., 5
5q 2 q2
2 = 8(10) 2 = 16 31
p p P(X 1)
32
q = 4p
1 p = 4p 31
1 P(X = 0)
5p = 1 32
1 31
p= 1 p5
5 32
1
16 p5
3. P(X = 0) = 32
81
16 1 1
4C0 p0 q4 = p p 0, 2
81 2
4
2
q4 = 7. Required probability
3 3 3 3 3
1 1 1 1
2 = C0 3C0 + 3C1 3C1
3
q= 2 2 2 2
3
3 3 3 3
1 1 1 1 1
p= + 3C2 3C2 + 3C3 3C3
3 2 2 2 2
4
1 1 1 1 5
P(X = 4) = 4C4p4q0 = p4 = = = (1 + 9 + 9 + 1) =
3 81 8 8 16
1
Std. XII : Triumph Maths
9 Since, P(X= 4), P(X= 5) and P(X= 6) are in A.P.
8. P(at least one success)
10 2P(X = 5) = P(X = 4) + P(X = 6)
n n n
9 1 1 1
P(X 1 ) 2 nC5 = nC4 + nC6
10 2 2 2
9 2 nC5 = nC4 + nC6
1 P(X = 0)
10 n! n! n!
2 = +
1 5!(n 5)! 4!(n 4)! 6!(n 6)!
P(X = 0)
10 2 1 1
0 n = +
1 3 1 5(n 5) (n 4) (n 5) 6 5
nC0
4 4 10 n2 21n + 98 = 0
3
n
1 (n 7) (n 14) = 0
n = 7 or 14
4 10
n 11. Let the probability of success and failure be p
4
10 and q respectively.
3 p = 2q
4 Since, p + q = 1
nlog10 log10 10
3 1
3q = 1 q =
n(log10 4 – log10 3) 1 3
1 1 2
n p=1 =
log10 4 log10 3 3 3
required probability
9. According to the given condition, 4 2 5
6 2 1 6 2 1
np + npq = 15 and (np)2 + (npq)2 = 117 = C4 + C5
n 2 p 2 (1 q 2 ) 117 3 3 3 3
= 6 0
(np npq) 2 152 2 1
+ 6C6
1 q2 117 3 3
= 240 192 64
(1 q) 2 225 =
729 729 729
2
6q2 13q + 6 = 0 q = 496
3 =
729
2 1
p=1 = 12. Mean = np and variance = npq
3 3
Since, np + npq = 15 np = 20 and npq = 16
1 2 20q = 16
n + n = 15 4
3 9 q=
n = 27 5
1 4 1
mean = np = 27 = 9 p=1 =
3 5 5
Since, np = 20
1 1
10. P(getting head) = p = n = 20
2 5
1 1 n = 100
q=1 =
2 2
r n r
1 1
Here, P(X = r) = nCrprqnr = nCr
2 2
n
n 1
= Cr
2
2