75% found this document useful (4 votes)
7K views75 pages

MHT Cet Triumph Maths Mcqs Based On STD Xii Syllabus MH Board Hints 12110 PDF

The document provides information about mathematical logic and matrices. Some key points: 1) It discusses various logical statements and their truth values, including open sentences, conditionals, contrapositives, and tautologies. 2) It covers matrix operations like finding the determinant, inverse, and product of matrices. It shows that for a matrix to have an inverse, its determinant must be non-zero. 3) It explains that for matrices A and B, if the determinant of B is zero, then both AB and A-1B are singular matrices with determinants equal to zero.

Uploaded by

Dheeraj Bangar
Copyright
© © All Rights Reserved
Available Formats
Download as PDF, TXT or read online on Scribd
Download as pdf or txt
75% found this document useful (4 votes)
7K views75 pages

MHT Cet Triumph Maths Mcqs Based On STD Xii Syllabus MH Board Hints 12110 PDF

The document provides information about mathematical logic and matrices. Some key points: 1) It discusses various logical statements and their truth values, including open sentences, conditionals, contrapositives, and tautologies. 2) It covers matrix operations like finding the determinant, inverse, and product of matrices. It shows that for a matrix to have an inverse, its determinant must be non-zero. 3) It explains that for matrices A and B, if the determinant of B is zero, then both AB and A-1B are singular matrices with determinants equal to zero.

Uploaded by

Dheeraj Bangar
Copyright
© © All Rights Reserved
Available Formats
Download as PDF, TXT or read online on Scribd
Download as pdf or txt
Download as pdf or txt
You are on page 1/ 75

Target Publications Pvt. Ltd.

Chapter 01: Mathematical Logic

01 Mathematical Logic
1. x + 3 = 10 is an open sentence. 8.
 It is not a statement. 1 2 3 4 5 6
 option (C) is correct. p q ~q p  q p  ~q ~(p  ~q)
T T F T F T
2. Since p  q is false, when p is true and q is
T F T F T F
false.
F T F F T F
p  (q  r) is false, F F T T F T
 p is true and q  r is false
 p is true and both q and r are false. The entries in the columns 4 and 6 are
identical.
3. Since, contrapositive of p  q is ~q  ~p.  ~(p  ~q)  p  q
 contrapositive of (~p  q)  ~r is  statement-l is true.
~(~r)  ~(~p  q)  r  (p  ~q) Also, all the entries in the last column of the
above truth table are not T.
4. ~p: Rohit is short.  ~(p  ~q) is not a tautology.
The given statement can be written  statement-2 is false.
symbolically as p  (~p  q).  option (B) is correct.
5. Let p: x is a complex number 9. Consider option (C)
q: x is a negative number (p  q)  (p  r)  (T  T)  (T  F)
 Logical statement is p  q TT
 converse of p  q is q  p T
 option (C) is correct.
 option (B) is correct.
11. The statement “Suman is brilliant and
6. Consider option (C)
dishonest iff suman is rich” can be expressed
p q r ~q p  ~q (p  ~q)  r as Q  (P  ~R)
T T T F F T The negation of this statement is
T T F F F T ~(Q  (P  ~R))
T F T T T T
12. (q)  (p) is contrapositive of p  q.
T F F T T F
F T T F F T  p  q  (~q)  (~p)
F T F F F T  option (D) is true.
F F T T F T 13. (~p  ~q)  (p  q)  (~p  q)
F F F T F T  ~p  (~q  q)  (p  q)
 (p  ~q)  r is a contingency  (~p  T)  (p  q)
 option (C) is correct.  ~p  (p  q)
 (~p  p)  (~p  q)
7. Consider option (A)  T  (~p  q)
p q p  q p  q ~(p q) (p  q) (p  q))  ~p  q
T T T T F F  option (B) is correct.
T F F T F F 14. Since, inverse of p  q is ~p  ~q.
F T F T F F  inverse of (p  ~q)  r
F F F F T F is ~(p  ~q)  ~r
 (p  q)  (~(p  q)) is a contradiction. i.e., ~p  q  ~r
 option (A) is correct.
1
Target Publications Pvt. Ltd. Chapter 02: Matrices

02 Matrices

1 2 2  1  tan  1  1  tan 
  tan    2  tan 
2. |A| = 2 1 1 = 1(1)  2(7) + 2(9)  1  sec   1 
1 4 3 1 1  tan 2  2 tan  
=  
=30 sec2   2 tan  1  tan 2  
1
 A exists.  cos 2  sin 2 
T =  
 1 7 9   1 2 0   sin 2 cos 2 
  
adj A =  2 5 6 =  7 5 3 By equality of matrices, we get
 0 3 3  9 6 3  a = cos 2, b = sin 2
 1 2 0 
1  1 2 3  x   6 
 A =  7 5 3
1
2 4 1  y    7 
3 6.     
 9 6 3 
 3 2 9   z  14 
 sum of the elements of A1
R2  R2  2R1, R3  R3  3R1
1
= ( 1  2 + 0  7  5  3 + 9 + 6 + 3) = 0 1 2 3   x   6 
3  0 0 5   y  =  5 
      
3. (adj A) A = |A| In
 0 4 0   z   4 
2 0 3 1 0 0 
 5z = 5  z = 1
A = 1 1 2 0 1 0 
4y = 4  y = 1
3 2 0 0 0 1  x + 2y + 3z = 6  x = 1
1 0 0 
= 11 0 1 0   1 2 1
7. Let A =  2  3 
0 0 1 
 1 0 3 
11 0 0 
Matrix will not be invertible if |A| = 0
=  0 11 0 
1 2 1
 0 0 11
 2  3 =0
1 2 4 1 0 3
4. Let A =  3 19 7   1(3) + 2(9)  1() = 0
 2 4 8  =9
 |A| = 0 8. Given, |A|  0 and |B| = 0
 A1 does not exist.
 |AB| = |A| |B| = 0
 1 tan  
1
1  1 tan  
T and |A1 B| = |A1| |B|
5.   tan  =
 1  
sec    tan 
2
1  =
1
|B|
 1
....  | A | 
1 
|A|  | A | 
1  1  tan  =0
= 
sec   tan 
2
1   1
AB and A B are singular.
1
Std. XII : Triumph Maths 
9. (AB)1 = B1 A1 13. Since, A(adj A) = |A|.I
 1 1  Replacing A by adj A, we get
  adj A (adj(adj A)) = |adj A|I
 B1 A1 =  2 2 
 1 0  A1.|A| (adj(adj A)) = |adj A|I
 4   1 
….  A 1  (adjA) 
 |A| 
10. (A2  8A)A1 = A.A.A1  8A.A1 1 2
  A (adj (adj A)) = |A| .I
= A  8I
….[ |adj A| = |A|n1]
 1 4 4  8 0 0 
=  4 1 4   0 8 0    A1(adj (adj A)) = 2I
 4 4 1  0 0 8   A1 (adj (adj A)) = I
Given, A1(adj (adj A)) = kI
 7 4 4
 k=
=  4 7 4 

 4 4 7 

1 2 0
11. det A = 1 1 2
2 1 1
= 13
2
 det (adj (adj A)) = (det A)(3 1)

….   adj(adjA)  A
(n 1)2 

 
= (det A)4 = (13)4

4 0 0
12. A. (adj A) =  0 4 0  ….(i)
 0 0 4 
1 0 0 
= 4 0 1 0 
0 0 1 
= 4.I
Since, A(adj A) = |A|.I
 |A| = 4
From (i), |A| . |adj A| = 64
64
 |adj A| = = 16
4
(n 1) 2
Also, |adj (adj A)| = A
(31)2
= A
= (4)4 = 256
adj(adjA) 256
 = = 16
adjA 16

2
Target Publications Pvt. Ltd. Chapter 03: Trigonometric Functions

03 Trigonometric Functions

1. sin 3x = 3 sin x  4 sin3x But cos x > 0 (x must be in 1st or 4th Quadrant)
1  3
 sin3x = (3sin x  sin 3 x)  the possible values are , .
4 8 8
cos 3x = 4 cos3x  3 cos x Case II:
1 If cos x < 0,
 cos3x = (cos3 x  3cos x) 1 1
4 sin x(cos x) =  sin 2x = 
Given, cos 3x cos3x + sin 3x sin3 x = 0 2 2 2
1 5 7 
 cos 3x (cos 3x + 3 cos x)  2x = ,
4 4 4
1 5 7 
+ sin 3x (3 sin x  sin 3x) = 0  x= ,
4 8 8
1  The values of x satisfying the given equation
 cos 2 3x+ 3cos x cos3x +3sin x sin 3x  sin 2 3x   0
4  3 5 7 
between 0 and 2 are , , , .
 cos2 3x  sin2 3x + 3(cos 3x cos x 8 8 8 8
+ sin 3x sin x) = 0 
 cos 6x + 3 cos 2x = 0 These are in A.P. with common difference .
4
 4 cos3 2x  3 cos 2x + 3 cos 2x = 0
2 2x
 4 cos3 2x = 0 3. 16sin x  16cos = 10
 cos 2x = 0 sin 2 x 2
 16 161 sin x = 10

 2x = (2n + 1) 2 16
2  16sin x  2
= 10
 16sin x
 x = (2n + 1) 2
4 Let t = 16sin x
16
2. sin x 8cos 2 x = 1 t+ = 10
t
 sin x 2 2 cos x = 1 ….  8  2 2   t2 + 16 = 10t
 t2  10t + 16 = 0
1  (t  2) (t  8) = 0
 sin x |cos x| =
2 2  t = 2 or t = 8
Case I: 2 2
 16sin x = 2 or 16sin x = 8
1 2 2
If cos x > 0, sin x cos x =  24sin x = 21 or 24sin x = 23
2 2
 4 sin2x = 1 or 4 sin2x = 3
1 1
 sin 2x = 1 3
2 2 2  sin2 x = or sin2 x =
4 4
1
 sin 2x =  
2  sin2x = sin2   or sin2x = sin2  
6
  3
 3 9 11  
 2x = , , ,  x = n ± or x = n ±
4 4 4 4 6 3
….[ x  (0, 2),  2x  (0, 4)]  7  5 11  4  2  5
x= , , , or x = , , ,
 3 9 11 6 6 6 6 3 3 3 3
 x= , , ,
8 8 8 8  There are 8 solutions in [0, 2].
1
Std. XII : Triumph Maths 
4. The maximum value of a sin x + b cos x is 6. tan4x  2 sec2x + a2 = 0
a 2  b2 .  tan4x  2(1 + tan2x) + a2 = 0
 tan4x  2 tan2x  2 + a2 = 0
 Maximum value of sin x + cos x is 2 and the
maximum value of 1 + sin 2x is 2.  tan4x  2 tan2x + 1  3 + a2 = 0
 The given equation will be true only when  (tan2 x  1)2 = 3  a2
 3  a2  0
sin x + cos x = 2 and 1 + sin 2x = 2
 a2  3
If sin x + cos x = 2
 |a|  3
1 1
 cos x  + sin x  =1
2 2 7. 3 cos x + 4 sin x = 5
   2 x   x 
 cos x cos + sin x sin = 1  1  tan 2   2 tan 2 
4 4  3  + 4 = 5
   1  tan 2 x   1  tan 2 x 
 cos  x   = 1  2  2
 4
x
 Let tan = t
 x  = 2n, 2
4  3  3t + 8t = 5 + 5t2
2
  8t2  8t + 2 = 0
 x = 2n + ….(i)
4  4t2  4t + 1 = 0
1 + sin 2x = 2  sin 2x = 1  (2t  1)2 = 0
 1
 sin 2x = sin t=
2 2
 x
 2x = n + (1)n.  tan = tan 
2 2
n  x
x= + (1)n. ….(ii)  = n + 
2 4 2
The value of x [, ] which satisfies both  x = 2n + 2

(i) and (ii) is .  2 
4  
8. tan  + tan     + tan    = 3
 3  3 
5. sin4 x + cos4 x = sin x cos x
 (sin2x + cos2x)2  2 sin2x cos2x = sin x cos x tan   3 tan   3
 tan  + + =3
1 1 1  3 tan  1  3 tan 
 1  (2 sin x cos x)2 = .2sin x cos x
2 2 tan (1  3 tan 2 )  (tan   3) (1  3 tan )
1 1
 1  sin2 2x = sin 2 x  (tan   3) (1  3 tan )
2 2  =3
1  3 tan 2 
 sin22x + sin 2x  2 = 0
9 tan   3tan 3 
 (sin 2x + 2) (sin 2x  1) = 0  =3
1  3tan 2 
 sin 2x = 1 ….[sin 2x  2]
  3tan   tan 3  
 sin 2x = sin  3 =3
 1  3tan  
2
2
  3 tan 3 = 3
 2x = n + (1)n
2 
 tan 3 = 1 = tan
n  4
x= + (1)n
2 4 
 3 = n +
 5 4
 The value of x in [0, 2] are and .
4 4 
  = (4n + 1)
 There are 2 solutions. 12
2
Chapter 03: Trigonometric Functions
5 20 2 (b  c) 2  2bc  a 2
9.   cos =
6 37 3 2bc
A B 1 (3 3) 2  2 18  a 2
 tan > tan  =
2 2 2 2 18
A B
    18 = 27 + 36  a2
2 2
 a2 = 27 + 36 + 18 = 81
 A>B
A B  a = 9 cm
tan  tan
 A B 2 2
 tan    = 11.
 2 2  1  tan A tan B B
2 2
30
5 20 3 1

 A  B  6 37
 tan   =
 2  1  5  20
6 37 105 45
A C
   C  185  120
 tan  =
 2  222  100
Let B = 30, C = 45  A = 105
  C  305
 tan    = sin A sin B sin C
 2 2  122  
a b c
C 305 sin105 sin 30 sin 45
 cot =   
2 122 3 1 b c
C 122
 tan =
2 305
 b=
 
3 1 sin 30

3 1
20 122 sin105 2sin105
Since, >

B
37
C
305
c=
 
3 1 sin 45
=
3 1
 tan  tan sin105 2 sin105
2 2
B C 1
  A(ABC) = bc sin A
2 2 2
B>C 1 3 1 3 1
=    sin105
A>B>C 2 2sin105 2 sin105
a>b>c
 
2
3 1
9 3 =
10. A(ABC) = 4 2 sin (60  45)
2
 
2

1 9 3 3 1
 bcsin A = =
2 2  3 1 1 1 
4 2    

1
 bc 
3 9 3
=  2 2 2 2
2 2 2
 
2
3 1
 2 3 =
….  sin A  sin    3 1 
 3 2  4 2 
 bc = 18  2 2 
b2  c2  a 2 3 1
cos A = =
2bc 2
3
Std. XII : Triumph Maths 
bc ca ab 2(a  b  c)  n2  3n  4 = 0
12. Let   k =
11 12 13 36  (n + 1) (n  4) = 0
abc  n = 1 or n = 4
= But n cannot be negative.
18
….(By property of equal ratio)  n=4
 b + c = 11k, c + a = 12k, a + b = 13k,  The sides of the  are 4, 5, 6.
a + b + c = 18 k
14.
 a = 7k, b = 6k, c = 5k A
b 2  c2  a 2
cos A =
2bc
E O B
36k  25k 2  49k 2
2
=
2(6k)(5k) r 72 r
12k 2 1
= 2
=
60k 5 D C
1 360
 cos A = In ODC, OD = OC = r, DOC = = 72
5 5
13. A 1 1
 A(ODC) = r.r. sin 72 = r2 sin 72
2 2
n+1 n 5
 A2 = Area of pentagon = r2 sin 72
2
B A1 = Area of circle = r2
C
n+2 A1 r 2
 =
Let AC = n, AB = n + 1, BC = n + 2 A2 5 2
r sin 72
 Largest angle is A and smallest angle is B. 2
 A = 2B 2 2 2 
Since, A + B + C = 180 = = sec 18 = sec
5cos18 5 5 10
 3B + C = 180
 C = 180  3B 15. Let a = 4k, b = 5k, c = 6k
 sin C = sin(180  3B) = sin 3B abc 4k  5k  6k 15k
Now, s = = =
sin A sin B sin C 2 2 2
 = =
n2 n n 1  = s(s  a) (s  b) (s  c)
sin 2B sin B sin 3B
 = = 15k  15k  15k  15k 
n2 n n 1 =   4k   5k   6k 
2  2  2  2 
2sin Bcos B sin B 3sin B  4sin 3 B
 = =
n2 n n 1 15k 7k 5k 3k 15 7 2
=    = k
2cos B 1 3  4sin B2
2 2 2 2 4
 = =
n2 n n 1 a a
By sine Rule, = 2R  sin A =
n2 n 1 sin A 2R
 cos B = , 3  4 sin2B =
2n n 1
n  1 = b csin A
 3  4(1  cos2 B) = 2
n 1 a abc
2   = bc =
n2 n 1 2 2R 4R
 3  4 + 4  =
 2n  n abc 4k.5k.6k 8
 R= = = k
n  4n  4
2
n 1 4 15 7k 2
7
1+ =
n 2
n Also  = rs, where r = Radius of incircle of
  n2 + n2 + 4n + 4 = n2 + n ABC
4
Chapter 03: Trigonometric Functions

15 7 2 Let length of altitude = p


 k 7
 r= = 4 = k Since, A + B + C = 
s 15k 2
 5
2  A+ + =
R 8 2 16 8 8
 = k =
r 7 7k 7  5 
 A=  =
R 16 8 8 4
 =
r 7 1 1
Area of  = ap = bc sin A
b c a
2 2 2 2 2
16. cos A =
2bc 
 ap = bc sin
43a 2
4
 cos 30 =
4 3 1
 ap = bc 
3 7a 2
2
 =
2 4 3 bc
7a =62  p= ….(i)
2a
 a2 = 1
a=1 ….[ a  1] By sine rule,
1 1 a b c
= bcsin A =  2  3  sin 30 = =
2 2   5
sin sin sin
1 3 4 8 8
= 3 =
2 2 
a sin
a  b  c 1 2  3 3 3 8 = 
s = = =  b= 2a sin
2 2 2 1 8
 = rs 2
 3 2 5
 r = =  a sin
s 2 3 3 8 = 5
c= 2 a sin
3(3  3) 3 3 3 3 1 1 8
= = =
93 6 2 2
17. a4 + b4 + c4 = 2a2(b2 + c2)  From (i),
 a4 + b4 + c4  2a2b2  2a2c2 = 0
 5
 a4 + b4 + c4  2a2b2 + 2b2c2  2a2c2 = 2b2c2 2a sin . 2a sin
5 
8 8 =
 b 2  c2  a 2  =   p= 2a sin sin
2 2
 2bc 2a 8 8
 b2 + c2  a2 = 2bc 2a  5 
=  2sin sin 
b c a
2 2
2bc2
1 2  8 8
 cos A = = =
2bc 2bc 2
a   5    5   
 A = 45 =  cos  8  8   cos  8  8  
 2     
18. A
4 a   3 
=  cos  cos 
2  2 4
p
 a   1 
8
= 0    
2  2 
B a C
a
5  P=
8 2
5
Std. XII : Triumph Maths 
A B 22. A, B, C are in A.P.
19. tan and tan are the roots of the quadratic
2 2  A + C = 2B
2
equation 6x  5x + 1 = 0 Also, A + B + C = 180
 B = 60
A B 5 A B 1
 tan + tan = , tan . tan = sin A sin B sin C
2 2 6 2 2 6   k
a b c
A B 5 5  sin A = ak, sin B = bk, sin C = ck
tan  tan
A  2 2 = 6 = 6 =1
 tan    = a c
 2 2  1  tan A tan B 1  1 5  sin 2C + sin 2A
c a
2 2 6 6
a c
= (2 sin C cos C) + (2sin A cos A)
 AB c a
 tan   1
 2  a c
= (2 ck cos C) + (2ak cos A)
AB  c a
 = = 2ka cos C + 2kc cos A
2 4
= 2k(a cos C + c cos A)
 
 A+B=  C= = 2kb ….[ b = a cos C + c cos A]
2 2
= 2 sin B
 ABC is a right angled triangle.
3
=2 ….[ B = 60]
1 2
acsin B
 2 ac = 3
20. r= = =
s 1 a  bc
(a  b  c)
2 1 1 1
23. 2 cot1 3 = 2 tan1   = tan1 + tan1
….[ sin B = sin 90 = 1]  3 3 3

ac acb  1 1 
 r =  1
 33 
acb acb = tan  
ac(a  c  b) ac(a  c  b) 1 1  1 
= = 2  3 3
(a  c)  b
2 2
a  c 2  2ac  b 2
 33
acb = tan1  
= 2 2
….[ a + c = b ] 2
 9 1 
2
 Diameter = a + c  b 6
= tan1  
8
21. A = 55, B = 15, C = 110 3
a b c = tan1
 = = =k 4
sin 55 sin15 sin110
  1
 cot   2cot 1 3  =
 a = k sin 55, b = k sin 15, c = k sin 110  4    3
tan   tan 1 
 c2  a2 = k2 sin2 110  k2 sin2 55 4 4
= k2(sin 110 + sin 55) (sin 110  sin 55)   3
1  tan tan  tan 1 
 165 55   55 165  4  4
= k2  2sin cos =
  2sin cos    1  
 2 2   2 2  tan  tan  tan 
4  4
= k2 sin 165 sin 55
3
= k2 sin 15 sin 55 1  1
= 4  43 = 7
= (k sin 55) (k sin 15) 3 43
1
= ab 4
6
Chapter 03: Trigonometric Functions

1 a  
24. Let cos 1   =   2x = sin   sin 1 x 
2 b 3 
a  
 cos1   = 2 = sin cos (sin1 x) – cos sin (sin1 x)
b 3 3
a 3 1
 cos 2 =  2x = cos (sin1 x)   x …. (i)
b 2 2
 1  a   1 Let sin1 x = 
1  a  
 tan   cos 1    + tan  4  2 cos  b    sin  = x
4 2  b    
cos  = 1  x 2
   
= tan     + tan      cos (sin1 x) = 1  x 2 ….(ii)
4  4 
1  tan  1  tan  From (i) and (ii), we get
=  3 1
1  tan  1  tan  2x =  1  x2  x
2 2
1  tan    1  tan  
2 2

=  4x = 3 1  x2  x
1  tan  2

2 1  tan 2    5x = 3 1  x 2
=  25x2 = 3  3x2 (squaring both sides)
1  tan 2 
 28x2 = 3
2 2 2 2b
= = = = 3
1  tan  cos 2
2
a a  x2 =
28
1  tan 
2
b
3 1 3 1 3
 x= =  =
25. cos1   cos1  = cos1   1   2 1  2  28 4 7 2 7
  (From the given relation it can be seen that x is
y positive)
Given, cos1 x – cos1 =
2
 33  1   
 xy  y2   27. L.H.S. = sin1  sin  + cos  cos 
 cos1   1  x 2  1    =   7   7 
 2  4 
  13  1  19 
+ tan1   tan  + cot   cot 
xy  2
  8   8 
 cos  =
2
 1  x  1  y4 
2
  2   1     
  = sin1 sin  5    + cos  cos     
  7    7 
 2
 xy
 1  x  1  y4 
2
= cos  
2     
+ tan1   tan     
 
  8 
 2

 2 1  x  1  y4 
2
= 2 cos   xy     
+ cot1   cot     
  8 
 
Squaring on both sides, we get
 2   3 
 y2  = sin1  sin   cos 1   cos 
4(1  x2) 1   = 4 cos2   4xy cos  + x2y2  7   7 
 4 
     
 4  y2  4x2 + x2y2 = 4 cos2   4xy cos  + x2y2 + tan1  tan  + cot1  cot 
 8   8 
 4x2 + y2  4xy cos  = 4  4 cos2 
 4x2 + y2  4xy cos  = 4 sin2  2 3 3 5
=   
7 7 8 8
 ….[ cos1 (x) =   cos1 x]
26. sin1 x + sin1 2x =
3
  13
 =   = 2  
 sin1 2x =  sin1 x 7 7 7
3
7
Std. XII : Triumph Maths 
13 a 1  1 1 
3
   3 sin1   = sin1 3   4   
7 b  3  3  3  
 a = 13, b = 7
 4 
 a + b = 13 + 7 = 20 = sin1 1  
 27 
4 5 16  23 
28. sin1 + sin1 + sin1 = sin1   = sin1 (0.852)
5 13 65  27 
4 2
 4  
2
3 1.732
 1    
1 5 5  = 0.866, 0.852 < 0.866
= sin 1  
5  13  13  5   2 2

 sin1 (0.852) < sin1 (0.866)
1 16
+ sin ….[ sin1 x is also an increasing function]
65
 3
 4 12 5 3  1 16 1
1  3 sin1   < sin1  2 
= sin  5  13  13  5  + sin 65  3  
 
 48  15  1  16  1 
= sin1   + sin    3 sin1   < ....(ii)
 65   65   3 3
 63   16   3
= sin1   + sin1 3
  sin1   = sin1 (0.6) < sin1  2 
 65   65  5  
  63  
2
 16 
= cos1  1     + sin1 3 
   sin1   < ….(iii)
  65    65  5 3

From (ii) and (iii), we get
 16   16 
= cos1   + sin1   1 3   
 65   65  B = 3 sin1   + sin1   < + =
 3 5 3 3 3

= 
2  B< ….(iv)
3
29. 2 = 1.414 From (i) and (iv), A > B
 2 2  1 = 2  1.414  1 = 2.828  1 = 1.828 
30. cot1 x + cot1 y + cot1 z =
 2 21> 3 ….[ 3  1.732 ] 2

 tan1 (2 2  1) > tan1  3 



2
 tan1 x +

2
 tan1 y +

2
 tan1 z =

2
….[ tan1 x is an increasing function]  1 1 1
tan x + tan y + tan z = 
  tan (tan1 x + tan1 y + tan1 z) = tan  = 0
 2 tan1 (2 2  1) > 2 
3 Let A = tan1 x, B = tan1 y, C = tan1 z
 tan  A  B   tan C
 A> ….(i)  tan (A + B + C) =
3 1  tan (A  B) tan C
sin 3  = 3 sin   4 sin3  tan A + tan B
 tan C
 3 = sin1 (3 sin   4 sin3 ) 1  tan A tan B
=
1 tan A  tan B
Put sin  = 1  tan C
3 1  tan A tan B
1 tan A  tan B  tan C  tan A tan B tan C
  = sin1   =
 3 1  tan A tan B  tan B tan C  tan C tan A

8
Chapter 03: Trigonometric Functions
 tan (A + B + C) = 0  x2 (6x + 2) = 2(8x2 + 6x)
 tan A + tan B + tan C = tan A tan B tan C  6x3 + 2x2 – 16x2  12x = 0
 6x3  14x2  12x = 0
 tan (tan1 x) + tan(tan1 y) + tan(tan1z)
 3x3  7x2  6x = 0
= tan(tan1 x) tan(tan1 y) tan(tan1 z)  x(3x2  7x  6) = 0
 x + y + z = xyz  x(x  3) (3x + 2) = 0
2
 1  9 9    x = 0, 3, 
31. cos1   cos  sin   3
 2 10 10   But x > 0,  x=3
  9  9  1 
= cos1 cos cos  sin sin  34. cot1 x + sin1 =
 4 10 4 10  5 4
   9   1
= cos1  cos    1 
  4 10    tan1 + tan1 5 =
x 1 4
1   5  18   1
= cos cos  20   5
  
 x 
….  sin 1 x  tan 1 
  23   1  x2 
= cos1  cos   
  20   1 1 
 tan1  tan 1 
1   23   x 2 4
= cos  cos  2  20    1 1 
  
   
  17    17  tan1  x 2  =
= cos1 cos    and 0 ≤ ≤ 1 1  1  4
  20   20  x 2 
17 2 x 
=  = tan = 1
20 2x 1 4
17  2 + x = 2x – 1
 Principal value is .  x=3
20

 23 
32. tan1 2 + tan1 3 =  + tan1  
1 23 
….[ 2  3 > 1]
=  + tan1 (1)
=   tan1 1
 tan1 1 + tan1 2 + tan1 3 = 
1 1 2
33. tan1 + tan1 = tan1 2
1  2x 4x  1 x
 1 1 
   2
 tan1  1  2 x 4 x  1  = tan1 2
1 1  1  x
 1  2x 4x  1 
4x  1  2x  1 2
 = 2
1  2 x  4 x  1  1 x
6x  2 2
 = 2
4 x  8x  1  2 x  1 x
2

9
Target Publications Pvt. Ltd. Chapter 04: Pair of Straight Lines

04 Pair of Straight Lines

1. L1: ax2 + 2hxy + by2 = 0 2 1


2  =0
Equation of any line passing through origin 4 4
and perpendicular to L1 is given by 2 9
 =  2 = 9   =  3
bx2  2hxy + ay2 = 0 4 4
….(interchanging coefficients of x2 and y2 and
change of sign for xy term) 5. The given equation of pair of lines is
 The required equation of pair of lines is x2 + 2 2 xy – y2 = 0
–15x2 + 7xy + 2y2 = 0  a = 1, b = 1, h = 2
i.e. 15x2 – 7xy – 2y2 = 0 Now, a + b = 1 + (1) = 0
2h  The lines are perpendicular
2. Here, m1  m2  .....(i)
b 6. The joint equation of the lines through the
a point (x1, y1) and at right angles to the lines
and m1m2  ax2 + 2hxy + by2 = 0 is
b
b(x – x1)2 – 2h(x – x1)(y – y1) + a(y – y1)2 = 0
 (m1 – m2)2 = (m1 + m2)2 – 4m1m2
 joint equation of pair of lines drawn through
4h 2  4ab (1, 1) and perpendicular to the pair of lines
=
b2 3x2 – 7xy + 2y2 = 0 is
4h 2  3h 2 2(x – 1)2 + 7(x – 1)(y – 1) + 3(y – 1)2 = 0
= 2
….[ 4ab = 3h2 (given)]
b 7. The given equations are x – y – 1 = 0 and
h2 2x + y – 6 = 0
  The joint equation is given by
b2
(x – y – 1) (2x + y – 6) = 0
h
 m1  m2  .....(ii)  2x2 + xy – 6x – 2xy – y2 + 6y – 2x – y + 6 =0
b  2x2 – y2 – xy – 8x + 5y + 6 =0
On solving (i) and (ii), we get
h 3h 8. Let the equation of one of the angle bisector of
m1  and m2  the co-ordinate axes be x + y = 0  m1 = –1
2b 2b
Given equation of pair of lines is
 m1 : m2 = 1 : 3 2x2 + 2hxy + 3y2 = 0
3. The lines are parallel, if af2 = bg2  A = 2, H = h, B = 3
 4f2 = 9g2 a 2
Now, m1m2 =  m2 =
3 b 3
f= g
2 2h 2 2h
Also m1 + m2 =  –1 – =
Let g = 2 and f = 3 b 3 3
 abc + 2fgh – af2 – bg2 – ch2 5
h=
= 4 (9) (c) + 2 (3) (2) (6) – 4(3)2 – 9(2)2 – c (6)2 2
=0 9. The given equation of pair of lines is
 c is any number. 3x2 – 2y2 + xy – x + 5y – 2 = 0
4. Given equation is x2  y2  x  y  2 = 0. 5 1 
 a = 3, b = –2, c = –2, f = , g = ,h=
 1 2 2 2
 a = 1, b = 1, c = 2, f = ,g= ,h=0 Now abc + 2fgh – af2 – bg2 – ch2 = 0
2 2
This equation represents a pair of straight 5 75 1  2
12 –    =0
lines, if abc + 2fgh  af2  bg2  ch2 = 0 4 4 2 2
1
Std. XII : Triumph Maths 
 22 – 5  25 = 0
 ( 5)(2 + 5) = 0
5
  = 5 or
2
10. Let y = mx be the common line and let y = m1x
and y = m2x be the other lines given by
2x2 + axy + 3y2 = 0 and 2x2 + bxy  3y2 = 0
respectively. Then,
a 2
m + m1 =  , mm1 = , and
3 3
b 2
m + m2 = , mm2 = 
3 3
2  2
 (mm1) (mm2) =   
3  3
4
 m2(m1m2) = 
9
4
 m2 = ….[ m1m2 = 1 (given)]
9
2
m=
3
2
When m = ,
3
2 2
mm1 = and mm2 =   m1 = 1 and m2 = 1
3 3
a b
 m + m1 =  and m + m2 =
3 3
 a = 5 and b = 1
2
When m =  ,
3
2 2
mm1 = and mm2 =  m1 = 1 and m2 = 1
3 3
a b
 m + m1 =  and m + m2 =
3 3
 a = 5 and b = 1
11. Given equation of pair of lines is
3x2 – 48xy + 23y2 = 0
 a = 3, h = –24, b = 23
2 576  69
 tan  =
3  23

2 507 2  13 3
 tan  = = = 3
26 26

  = tan–1 ( 3 ) =
3

2
Chapter 05: Vectors

05 Vectors

1. Since, a  b and b  c are collinear with c 4. aˆ  aˆ 1, bˆ  bˆ 1, cˆ  cˆ  1,


1
and a respectively aˆ  bˆ  bˆ  cˆ  cˆ  aˆ 
2
 a  b  tc …(i)
aˆ  aˆ aˆ  bˆ aˆ  cˆ
2
b  c  sa …(ii)    ˆ ˆ ˆ ˆ
 a b c   b  aˆ b  b b  cˆ
From (i) and (ii), we get cˆ  aˆ cˆ  bˆ cˆ  cˆ
a  c  tc  sa  a(1  s)  c(1  t) 1 1
1
But a and c are non-collinear 2 2
1 1 1
 1 + s = 0, 1 + t = 0  s = 1, t = 1  1 
2 2 2
Substituting value of t in (i) and value of s in 1 1
(ii), we get 1
2 2
a  b  c and b  c  a a b c  
1
   cubic units
Hence, a  b  c  0 . 2

a 1 1
2. Given, r  1 r 1   2 r 2   3 r 3
5. Since, 1 b 1  0
 2a  3b  4c  (1   2   3 )a 1 1 c

 ( 1   2   3 )b  (1   2   3 ) c Applying R2  R2  R1 and R3  R3  R1,


we get
 1   2   3  2, 1   2   3 = 3, a 1 1
1   2   3  4 1 a b 1 0  0
7 1 1 a 0 c 1
 1  , 2 = 1, 3 = 
2 2  a(b  1)(c  1)  (1  a)(c  1)  (1  a)(b  1)  0
 1 + 3 = 3 Dividing by (1  a)(1  b)(1  c), we get
a 1 1
3. Since, the given vectors are coplanar   0 ….(i)
1 a 1 b 1 c
a a c 1 1 1
Consider,  
 1 0 1 =0 1 a 1 b 1 c
c c b 1 a
=  ….[From (i)]
1 a 1 a
Applying C2  C2 – C1, =1
a 0 c
6. Volume of the parallelopiped formed by
1 1 1 = 0 vectors is
c 0 b 1 a 1
 a (–b) + c (c) = 0  c2 = ab i.e., V = 0 1 a = 1  a + a3
a 0 1
Hence, c is the geometric mean of a and b.
1
Std. XII : Triumph Maths 

dV d2V 9. Let c  2iˆ  3jˆ  4kˆ


 = 1 + 3a2, = 6a
da da 2  a c  c b
dV
For max. or min. of V, =0  a  c  b  c
da
1  
 a  b c  0
 a2 =
3   a  b  || c
1
 a= Let  a  b   c
3
2
d V 1  ab   c
2
= 6a > 0 for a =
da 3
 29  |  | . 29
1
 V is minimum for a =   = 1
3
 a  b = (2iˆ  3jˆ  4k)
ˆ
7. Given, a .b  b.c = c.a = 0   
Now, a  b . 7iˆ  2ˆj  3kˆ   (14  6  12)
The scalar triple product of three vectors is
=4
[ a b c ] = (a  b).c
10. Given,
 a .b  0  ab
l a  mb  nc l b  mc  na l c  ma  nb   0
 
 angle between a and b is  = 90
Similarly, [ a b c ] = | a | | b |n.c ˆ where n̂ is a  l a  mb  nc na  l b  mc ma  nb  l c   0
normal vector. l m n
 n̂ and c are parallel to each other  n l m a b c   0
 [ a b c ] = | a | | b | | nˆ |.| c |  | a | | b | | c | . m n l

8. Given, r  b = c  b l m n
 n l m 0 ....   a b c   0 
 
 r  c  b= 0
m n l
 

 r  c is parallel to b  l3 + m3 + n3  3lmn = 0
 r  c =  b for some scalar   (l + m + n) (l2 + m2 + n2  lm  mn  nl) = 0
 r = c  b ….(i) l+m+n=0

 
 r . a = c.a +  b  a 11.
P
A

 0 = c.a +   b  a  M

….  r  a  0(given)  H

O
a.c
= B C
a.b D
Substituting the value of  in (i), we get
a.c
r= c b
a.b
Let point O be the circumcentre of ABC.
a.c
 r.b = c.b  (b.b)
a.b Let a , b , c , p , d , h , m be the position
(4) vectors of the respective points.
 r.b 1  2=9
1 Since, h = a + b + c ….(Standard formula)

2
Chapter 05: Vectors

ph pabc  mx  nx1 my2  ny1 mz 2  nz1 


 m= = D  2 , , 
2 2  mn mn mn 
pabc bc  3(9)  13(5) 3(6)  13(3) 3( 3)  13(2) 
 DM  m  d =   , , 
2 2  3  13 3  13 3  13 

pa  27  65 18  39 9  26 
=  , , 
2  16 16 16 
 38 57 17 
pa  , , 
 DM  PA =   ap    16 16 16 
 2 
 19 57 17 
1  , , 
=  a 2  p2   8 16 16 
2
17. A(x1, y1, z1)
=0
….[ O is circumcentre,  OA = OP i.e., a = p] (l, 0, 0) (0, 0, n)
 DM is perpendicular to PA.

15. Let position vector of Q be r B(x2, y2, z2) (0, m, 0) C(x3, y3, z3)
Since, p divides PQ in the ratio 3 : 4 x1 + x2 = 2l, x2 + x3 = 0, x3 + x1 = 0
3r  4(3p  q) On solving we get x1 = l, x2 = l, x3 = l
 = p
3 4 y1 + y2 = 0, y2 + y3 = 2m, y3 + y1 = 0
On solving we get y1 = m, y2 = m, y3 = m
 7 p = 3 r + 12 p + 4 q z1 + z2 = 0, z2 + z3 = 0, z3 + z1 = 2n
 – 5p – 4q = 3 r On solving we get z1 = n, z3 = n, z2 = n
1  A(l, m, n), B(l, m, n), C(l, m, n)
 r =
3

5p  4q  By distance formula,
AB2 = (l  l)2 + (m m)2 +(n + n)2 = 4m2 + 4n2
16. A(3, 2, 0) BC2 = (l + l)2 + (m  m)2 +(n n)2 = 4l2 + 4n2
 CA2 = (l + l)2 + (m m)2 +(n  n)2 = 4l2 + 4m2
3 13 AB2  BC2  CA 2

l 2  m2  n 2
4m 2  4n 2  4l 2  4n 2  4l 2  4m 2
=
B(5, 3, 2) D C (–9, 6, –3) l 2  m2  n 2

By distance formula, =8
l 2
 m2  n 2 
=8
l 2  m2  n 2
AB = (5  3)  (3  2)  (2  0)
2 2 2

18. A(1, 0, 3)
= 4 1 4
= 9=3

AC = (3  9) 2  (2  6) 2  (0  3) 2

= 144  16  9
B(4, 7, 1) D C(3, 5, 3)
= 169 = 13
Let D be the foot of perpendicular and let it
 Point D divides seg BC in the ratio of 3 : 13 divide BC in the ratio  : 1 internally
 By section formula,

3
Std. XII : Triumph Maths 

 3  4 5  7 3  1 
 D  , , 
  1  1  1 
AD = d  a
 3  4  ˆ  5  7  ˆ  3  1  ˆ ˆ ˆ
= i    j  k  i  3k
  1    1    1 
 2  3  ˆ  5  7  ˆ  2  ˆ
= i    j k
  1    1    1

BC = 3iˆ  5jˆ  3kˆ  4iˆ  7ˆj  kˆ 
= ˆi  2ˆj  2kˆ
Since, AD  BC .
AD . BC = 0
 2  3   5  7   2 
  ( 1)    ( 2)    (2)  0
  1    1    1
 2  3  10  14  4 = 0
  12  21 = 0
7
= 
4
  7  7  7 
 3  4   4 5   4   7 3  4   1 
 D    ,   ,   
  7 1 7
 1
7
  1 
 4 4 4
 
 21  16 35  28 21  4 
 , , 
 7  4 7  4 7  4 
 5 7 17 
 , , 
3 3 3 

4
Chapter 06: Three Dimensional Geometry

06 Three Dimensional Geometry 

1.  =  = 2 Since, AD is equally inclined to the axes


 p5 r  12
  = ,  =  =1=
2 2 2
Since, cos2 + cos2 + cos2 = 1  p = 7, r = 14

 cos2 + cos2 + cos2 =1 4. The d.r.s of AB are 3  1, 2  4, 6  5
2
i.e. 2, –2, 1
1  cos 
 2cos2 + =1 Let a1, b1, c1 = 2, 2, 1
2
d.r.s. of BC are 1 – 3, 4 – 5, 5  3
 4 cos2 + cos  1 = 0
i.e., 2, 1, 2
1  1  16 1  17 Let a2, b2, c2 = 2, 1, 2
 cos  = 
2(4) 8
 a1a2 + b1b2 + c1c2 = 2(2) + (2)(1) + 1(2)
If  is acute, then cos  is positive. =4+2+2=0
17  1  AB and BC are perpendicular.
 cos  =
8  mABC = 90

2. cos = l1l2 + m1m2 + n1n2 5. The given equations are


2 2
sin = 1 – cos  6mn  2nl + 5lm = 0, and ….(i)
2
= 1.1  cos  3l + m + 5n = 0
=  l12  m12  n12   l22  m 22  n 22   m = –3l  5n ….(ii)
Substituting value of m in equation (i),
 (l1l2 + m1m2 + n1n2)2
we get
= l12 l22  l12 m 22  l12 n 22  l22 m12  m12 m 22  m12 n 22 6(3l  5n)n  2nl + 5l(– 3l  5n) = 0
+ l n  m n  n n l l  m m  n n
2 2
2 1
2 2
2 1
2
1
2
2
2 2
1 2
2
1
2
2
2
1
2
2  18ln  30n2  2nl  15l2  25nl = 0
2l1l2 m1m 2  2m1m 2 n1n 2  2n1n 2l1l2  15l2 + 45ln + 30n2 = 0
= l12 m 22  2l1l2 m1m 2  l22 m12  m12 n 22  2m1m 2 n1n 2  l2 + 3ln + 2n2 = 0
 (l + n)(l + 2n) = 0
 m 22 n12  l22 n12  2l1l2 n1n 2  l12 n 22
 l = n or l = 2n
= (l1m2  l2m1)2 + (m1n2  m2n1)2 + (n1l2  n2l1)2
If l = n, then m = 2n
3. Given, A(2, 3, 7), B(1, 3, 2), C(p, 5, r) l n m n
  and 
Let D be the midpoint of BC. 1 1 2 1
 1  p 3  5 2  r   p  1 r  2  l m n
 D  , ,   , 4,    
 2 2 2   2 2  1 2 1
p 1 r2  d.r.s. of the 1st line are 1, 2, 1.
 d.r.s. of AD are 2, 4 – 3, 7
2 2 If l = 2n, then m = n
p5 r  12 l n m n
i.e., , 1,   and 
2 2 2 1 1 1
1
Std. XII : Triumph Maths 
l m n 1
    cos  = 
2 1 1 3
 d.r.s. of the 2nd line are 2, 1, 1. 1
 l = m = n = cos  = 
1  (2)  2  1  (1)  1 3
 cos  =
1  22  (1) 2 ( 2) 2  12  12
2

2  2  1 1
= 
6 6 6
 1 
  = cos1  
 6 

6. Since, (l  m)2  0
 l2  2lm + m2  0
 l2 + m2  2lm ….(i)
2 2
Similarly, m + n  2mn ….(ii)
2 2
and n + l  2nl ….(iii)
Adding (i), (ii) and (iii), we get
2(l2 + m2 + n2)  2(lm + mn + nl)
 lm + mn + nl  1
 The maximum value of lm + mn + nl is 1.
7. Let A = (a, 2, 3), B  (3, b, 7) and
C  (3, 2, 5)
d.r.s of AB are 3  a, b  2, 4
d.r.s of BC are 6, 2b, 12
Since the points are collinear
3a b  2 4
  
6 2  b 12
 a = 2, b = 4
8. Let the d.r.s of the line perpendicular to both
the lines be a, b, c.
d.r.s of lines is 1, 1, 0 and 2, 1, 1
 ab=0 ….(i)
2a  b + c = 0 ….(ii)
On solving (i) and (ii), we get
a b c
 
1 1 1
 d.r.s of the line are 1, 1, 1
1 1 1
 the required d.c.s are , ,
3 3 3

9. Since cos2  + cos2  + cos2  = 1


 cos2  + cos2  + cos2  = 1 ….[  =  = ]
 3 cos2  = 1
2
Target Publications Pvt. Ltd. Chapter 07: Line

07 Line

x  1 y  12 z  7 63 63
1. Let   =r  k2 = = 81
1 5 2 49
 x =  r  1, y = 5r + 12, z = 2r + 7  k=9
 Co-ordinates of any point on the line are Since, the line makes obtuse angle with X-axis
(r  1, 5r + 12, 2r + 7). component along X-axis is negative.
This point lies on the curve 11x2 – 5y2 + z2 = 0  k = 9
 11( r  1)2  5(5r + 12)2 + (2r + 7)2 = 0  The components of the line vector are 3k, 2k, 6k
 11r2 + 22r + 11  125r2 – 600r  720 i.e., 27, 18, 54
+ 4r2 + 28r + 49 = 0 4. Let M be the foot of the perpendicular drawn
2
  110r – 550r – 660 = 0 from the point P(3, 1, 11) to the given line.
 r2 + 5r + 6 = 0 x y 2 z3
 (r + 2)(r + 3) = 0 Let   
2 3 4
 r = 2 or r = 3
 x = 2, y = 3 + 2, z = 4 + 3
If r = 2, then the point is (1, 2, 3)
 M  (2, 3 + 2, 4 + 3)
and if r = 3, then the point is (2, 3, 1)
d.r.s. of PM are 2  3, 3 + 3, 4  8
 option (A) is correct. Since, PM is perpendicular to the given line
2. The given equation of line is  (2  3)(2) + (3 + 3)(3) + (4  8)(4) = 0
x = 4y + 5, z = 3y  6.  4  6 + 9 + 9 + 16  32 = 0
It can be written as =1
x5 z6  M  (2, 5, 7)
y= = r, say
4 3  length of perpendicular (PM)
 co-ordinates of the any point on the line are = (3  2) 2  (1  5) 2  (11  7) 2
(4r + 5, r, 3r  6).
= 1  36  16
This point is at a distance of 3 26 from the
= 53
point (5, 0, 6)
 
2
 (4r + 5  5)2 + (r  0)2 + (3r  6 + 6)2 = 3 26 5. When square is folded co-ordinates will be
D(0, 0, a), C(a, 0, 0), A(– a, 0, 0), B(0, – a, 0).
 16r2 + r2 + 9r2 = 234 Y
 26r2 = 234
 r2 = 9 D
 r = 3
a
If r = 3, then the point is
(4  3 + 5, 3, 3  3  6)  (17, 3, 3) a a
X A C X
3. Let the components of the line vector be a, b, c. a
 a2 + b2 + c2 = (63)2 ….(i)
a b c B
Also,    k , say
3 2 6 Y
 a = 3k, b = 2k, c = 6k xa y z
Substituting value of a, b and c in equation (i), Equation AB is,  
we get a a 0
9k2 + 4k2 + 36k2 = 632 x y za
and equation of DC is  
 49k2 = 63  63 a 0 a
1
Std. XII : Triumph Maths 
 shortest distance Let S divide AB in the ratio  : 1
a 0 a  3  4 5  7 3  1 
 S  , ,  ….(i)
a a 0   1  1  1 
a 0 a Now, d.r.s. of PS are
=
(a 2  0) 2  (0  a 2 ) 2  (0  a 2 ) 2 3  4 5  7 3  1
1 , 0 , 3
 1  1  1
2  3 5  7 2
i.e., , ,
 1  1  1
a(a 2 )  a(a 2 ) 2a 3 2a i.e., 2 + 3, 5 + 7, 2
= = =
a a a
4 4 4
3a 4
3 Also, d.r.s. of AB are 1, 2, 2
6. Given equation of motion of a rocket is Since, PS  AB
x = 2t, y = 4t, z = 4t  (2 + 3)(1) + (5 + 7)(2) + (2)(2) = 0
x y z   2  3  10  14  4 = 0
i.e., the equation of the path is  
2 4 4 7
=
x y z 4
i.e.,  
1 2 2 Substituting the value of  in (i), we get
Thus, the path of the rocket represents a  5 7 17 
straight line passing through the origin. S=  , , 
3 3 3 
For t = 10 sec.
we have, x = 20, y = –40, z = 40 9. Equation of the line passing through the points
Let M(20, 40, 40) (5, 1, a) and (3, b, 1) is
 OM = x2  y 2  z2 x  3 y  b z 1
  ….(i)
5  3 1 b a 1
= 400  1600  1600 = 60 km
 17 13 
 Rocket will be at 60 km from the starting The line passes through the point  0, , 
 2 2 
point O(0, 0, 0) in 10 seconds.
17 13
7. d.r.s. of L1 are 3, 1, 2 and d.r.s. of L2 are 1, 2, 3 b 1
3
ˆi ˆj kˆ  = 2  2 ….[From (i)]
2 1 b a 1
 vector perpendicular to L1 and L2 = 3 1 2 15
1 2 3  a–1= 2 =5
3
= ˆi(3  4)  ˆj(9  2)  k(6
ˆ  1)
2
= ˆi  7ˆj  5kˆ  a=5+1=6
ˆi  7ˆj  5kˆ ˆi  7ˆj  5kˆ and 3 + 3b = 17 – 2b
 unit vector = =  5b = 20  b = 4
1  49  25 5 3
 a = 6, b = 4
8. Let S be the foot of perpendicular drawn from
P(1, 0, 3) to the join of points A(4, 7, 1) and
B(3, 5, 3)
P (1, 0, 3)

 1
A(4,7,1) S B(3,5,3)

2
Target Publications Pvt. Ltd. Chapter 08: Plane

08 Plane

1. Given planes are 3. Given euation of line and plane are


x  cy  bz = 0
cx  y + az = 0
….(i)
….(ii)
 
r = ˆi  ˆj   2iˆ  ˆj  4kˆ , and

bx + ay  z = 0 ….(iii) r.  ˆi  2ˆj  kˆ   3
Equation of a plane passing through the line of
intersection of planes (i) and (ii) is  b  2iˆ  ˆj  4kˆ and
x  cy  bz + k(cx  y + az) = 0 n  ˆi  2ˆj  kˆ
 (1 + ck)x  (c + k)y  (b  ak)z = 0 ….(iv)
Now, planes (iii) and (iv) are same for some
 
Consider b  n = 2iˆ  ˆj  4kˆ  ˆi  2ˆj  kˆ 
value of k, =2+2–4
1  ck c  k (b  ak) =0
 =  =
b a 1  the line lies in the plane.
1  ck ck
 =  4. The equation of the given line is
b a
1 1
 a + ack = bc – bk x = 2 + t, y = 1 + t, z =   t
2 2
 k(b + ac) = (a + bc)
1
 a  bc  z
k=  x  2 y 1 2
   
 b  ac  1 1 1

ck 2
Also,  = b  ak
a  The given line passes through the point
 a  bc   1 1
 c  b  ac   2,1,   and it’s d. r.s are 1, 1, 
 a  bc   2 2
    b  a 
 a   b  ac  The equation of the given plane is
  x + 2y + 6z = 10
 bc  ac 2  a  bc  d.r.s of the normal to the plane are 1, 2, 6
 = b2 + abc + a2 + abc
a ax1  by1  cz1  d
 p=
 1 – c2 = a2 + b2 + 2abc a 2  b2  c2
 a2 + b2 + c2 + 2abc = 1
 1
1(2)  2(1)  6     10
2. Let a, b, c be the intercepts form by the plane  2
=
on co-ordinate axes. 12  22  62
1 1 1 1
Since,   
a b c 2
2  2  3  10 9
2 2 2 = =
   1 1  4  36 41
a b c
 9
 The point (2, 2, 2) satisfies the equation of the  =
x y z  41
plane    1 .
a b c   = 9,  = 41
 the required point is (2, 2, 2).  5   = 5(9)  41 = 45 – 41 = 4
1
Std. XII : Triumph Maths 

5. Let a be the vector along the line of Let A  (2, 1, 3), AM be  to the given plane
intersection of the planes 3x  7y  5z = 1 and and let B  (x, y, z) be the image of A in the
8x – 11y + 2z = 0. the d.r.s of the normals to Plane.
the planes are 3, 7, 5 and 8, 11, 2. the d.r.s. of the normal to the plane are 3, 2, 1
ˆi ˆj kˆ  The equation of the line AM is
 a = 3 7 5 x  2 y 1 z  3
  = k, say
8 11 2 3 2 1
= ˆi(14  55)  ˆj(6  40)  k(
ˆ 33  56)  x = 3k + 2, y = 2k  1, z = k + 3
Let M  (3k + 2, 2k  1, k + 3)
= 69iˆ  46ˆj  23kˆ
 equation of plane becomes
Similarly, let b the vector along the line of
3(3k + 2)  2(2k  1)  (– k + 3) = 9
intersection of the planes 5x  13y + 3z + 2 = 0
and 8x – 11y + 2z = 0 2
 k=
the d.r.s of the normals to the planes are 7
5, 13, 3 and 8, 11, 2 6 4 2   20 11 19 
 M    2,   1,   3    ,  , 
ˆi ˆj kˆ 7 7 7   7 7 7
 b = 5 13 3 Since, M is the mid point of AB.
8 11 2 x1  2 20 y1  1 11 z  3 19
 = ,  , 1 
2 7 2 7 2 7
= ˆi(26  33)  ˆj(10  24)  k(
ˆ 55  104)
26 15 17
= 7iˆ  14ˆj  49kˆ  x1 = , y1 =  , z1 =
7 7 7
Consider,
 26 15 17 
  
a . b = 69iˆ  46ˆj  23kˆ . 7iˆ  14ˆj  49kˆ Image of A is B  ,  , 
 7 7 7 
= 69  7 + (46)  14 + 23  49
= 483  644 + 1127 8. Since, a and b are coplanar, a  b is a vector
=  1127 + 1127 perpendicular to the plane containing a and b .
=0
 a and b are perpendicular Similarly, c  d is a vector perpendicular to the
  = 90 plane containing c and d .
 sin = sin 90 = 1 The two planes will be parallel, if their normals
6. The equation of the given plane is a  b and c  d are parallel.
2x  (1 + )y + 3z = 0
 2x  y  y + 3z = 0  a  b   c  d   0
 (2x  y)  (y  3z ) = 0
1 9. Equation of the plane containing the given
 (2x  y)  (y  3z) = 0 lines is

 The plane passes through the point of x 1 y  2 z  3
intersection of the planes 2x  y = 0 and 2 3 4 =0
y  3z = 0 3 4 5
7. A(2, 1, 3)  (x  1) (15  16)  (y  2) (10  12)
+ (z  3) (8  9) = 0
 (x  1) (1)  (y  2) (2) + (z  3) (1) = 0
3x – 2y – z = 9
M  x + 1 + 2y  4  z + 3 = 0
 x + 2y  z = 0
B  x  2y + z = 0 ….(i)
2
Chapter 08: Plane
Given equation of plane is The equation of the plane is
Ax  2y + z = d ….(ii) x y z
  =1
The planes given by equation (i) and (ii) are a b c
parallel. Since, this plane is at a distance of 1 unit from
 A=1 the origin,
distance between the planes (D) is
1
d d =1
D=  1 1 1
12   2   12
2
6 2
 2 2
a b c
d 1 1 1
 = 6  2
 2  2 =1
6 a b c
 |d| = 6 1 1 1
 2  2  2 = 1 ….[From (i)]
9x 9y 9z
10. P(2, 1, 2)
1 1 1
 2
 2  2 =9
x y z
k=9
Q 2x + y + z = 9
12. Let the equation of the plane OAB be
ax + by + cz = d
Since, direction cosines of PQ are equal and This plane passes through the points A(1, 2, 1)
positive and B(2, 1, 3)
1 1 1  a + 2b + c = 0, …(i)
 the d.r.s. of PQ are , ,
3 3 3 and 2a + b + 3c = 0 …(ii)
 The equation of the line PQ is  on solving (i) and (ii), we get
x  2 y 1 z  2 a b c
   
1 1 1 5 1 3
3 3 3 Similarly, let the equation of the plane ABC be
 x – 2 = y + 1 = z  2 = k, say a(x + 1) + b(y  1) + c(z  2) = 0
 Co-ordinate of the point Q are Substituting the co-ordinates of A and B, we get
(k + 2, k  1, k + 2) 2a + b  c = 0,
The point Q lies on the plane 2x + y + z = 9 and 3a + c = 0
 2(k + 2) + k  1 + k + 2 = 9 a  b c
  
 4k + 5 = 9 k=1 1 5 3
 Q  (3, 0, 3) If  is the angle between two planes, then it is
the angle between their normals.
3  2   0  1   3  2 
2 2 2
 PQ =
51 (1)  ( 5)  (3)  (3)
 cos  =
= 111 = 3 25  1  9 1  25  9
11. Let A  (a, 0, 0), B  (0, b, 0), C  (0, 0, c) 559
=
a b c 35 35
 G  (x, y, z)   , , 
 3 3 3 19
=
a b c 35
 = x, = y, = z
3 3 3  19 
  = cos1  
 a = 3x, b = 3y, c = 3z ….(i)  35 
3
Std. XII : Triumph Maths 
13. The equation of the given plane can be written
x y z
as   =1
20 15 12
Let the plane intersects the x, y and z axes in the
points A(20, 0, 0), B(0, 15, 0), C(0, 0, 12)
 ˆ b 15jˆ , and c   12kˆ
a  20i,
1
 Volume of tetrahedron = a b c 
6 
20 0 0
1
= 0 15 0 = 600 = 600
6
0 0 12

14. Given lines are coplanar.


1 2 4  3 5  4
 1 1 k = 0
k 2 1
  1(1 + 2k)  1(1 + k2) + 1(2  k) = 0
  1  2k  1  k2 + 2  k = 0
  k2  3k = 0  k(k + 3) = 0
 k = 0 or k = 3

4
Chapter 09: Linear Programming

09 Linear Programming

1. Let no. of model M1 = x and no. of model M2 = y Y


 x ≥ 0, y ≥ 0
Constraints are 4x + 2y ≤ 80  2x + y ≤ 40, 2x + 5y ≤ 180 (0, 40)
Maximize z = 3x + 4y
The corners of feasible region are C(0, 36)
B(2.5, 35)
O(0, 0), A(20, 0), B(2.5, 35), C(0, 36)
2x + 5y = 180
 At A (20, 0), z = 3(20) + 0 = 60
(90,0)
At B (2.5,35), z = 3(2.5) + 4(35) = 147.5 X
A(20, 0) X
O
At C (0, 36), z = 0 + 3(36) = 108 2x+y=40
 z is maximum at B(2.5, 35). Y

3. Objective function P = 2x + 3y
The corner points of feasible region are Y
B(12, 12), C(3,3), D(20, 3), E(20, 10), F(18, 12) x = 20
(0,30)
At B = PB = 2 (12) + 3 (12) = 60
xy=0
At C = PC = 2 (3) + 3 (3) = 15
At D = PD = 2 (20) + 3 (3) = 49
B(12,12) F(18,12)
At E = PE = 2 (20) + 3 (10)= 70 y = 12
E(20,10)
At F = PF = 2 (18) + 3 (12) = 72
C(3,3) D(20,3) y=3
 P is maximum at F(18, 12). X X
O (30, 0) x + y = 30
4. For (1, 3), 3x + 2y = 3 + 6 > 0, Y
for (5, 0), 3  5 + 0 > 0,
and for (1, 2), 3 + 4 > 0
Similarly, other inequalities satisfies the given points.
 Option (D) is the correct answer.
5.
Y

(0,1500)

(0,1000)

B(800,600) x2 = 600
A(0,600) C(1000,500)

(2000,0)
X X
O D(1500,0)
x1 + 2x2 = 2000
Y x1 + x2 = 1500
1
Std. XII : Triumph Maths 
OABCD is the feasible region
 O(0, 0), A(0, 600), B(800, 600), C(1000, 500), D(1500, 0)
z = x1 + x2
At point C and D, z is maximum. Max z = 1500
 Infinite optimal solutions exist along CD.
6. Consider option (C)
3 + 2(4)  11
3(3) + 4(4) ≤ 30
2(3) + 5(4) ≤ 30
 All the above three in-equalities hold for point (3, 4).
 Option (C) is the correct answer.
7. Let the manufacturer produce x and y bottles of medicines A and B.
3x y
He must have +  66, x + y  45000, x  20000, y  40,000, x  0, y  0.
1000 1000
 the number of constraints is 6.
8. Let the company produce x telephones of A type and y telephones of B type.
 Constraints are 2x + 4y  800  x + 2y  400, x + y  300
Maximize z = 300x + 400y
Y

(0, 300)
(0, 200)
x + 2y = 400
(400, 0)
X X
O (300,0)

Y x + y = 300

 the feasible region of the LPP is bounded.


9. Given that 4x + 2y  8, 2x + 5y  10
 the feasible region lies on origin side of 4x + 2y = 8 and 2x + 5y = 10.
Also, x, y  0
 the feasible region lies in first quadrant.
 option (C) is correct. X2

10. Objective function z = x1 + x2


The corner points of feasible region are 2 7
C , 
2 7 3 3
O(0, 0), A(2, 0), B(2, 1), C  ,  and D(0, 1)
3 3
D(0,1) B(2, 1)
2 7
At B(2, 1) and C  ,  , z is maximum. Max z = 3
3 3 X1 X1
O A(2,0)
 Infinite number of solutions exists along BC.
2x1 + x2 = 1 x1 + x2 = 3
X 2 x1 = 2
2
Chapter 09: Linear Programming
11. Objective function z = 3x + 2y
The corner points of feasible region are
1 5 1 5 5 7 Y
A  ,  , B  ,  , C(1, 0), D(3, 0), E(3, 3), F  ,  y  5x = 0
4 4 6 6 2 2 (0,6) x=3
1 5
At A = zA = 3    2   = 3.25
4 4
F(5/2, 7/2)
1 5
At B = zB = 3    2   = 2.167 E(3,3)
6 6
At C = zC = 3(1) + 2(0) = 3
A(1/4, 5/4)
At D = zD = 3(3) + 2(0) = 9 B(1/6,5/6)
At E = zE = 3(3) + 2(3) = 15 D(3,0) (6,0)
X O C(1,0) X
5 7 x  y = 1 x+y=6
At F = zF = 3    2   = 14.5 x+y=1
2 2
Y
 Maximum value of z at (3,3) is 15.

3
Target Publications Pvt. Ltd. Chapter 10: Continuity

10 Continuity 

1  cos(1  cos x) a 2  ax  x 2  a 2  ax  x 2
1. f(0) = lim = lim
x 0 x4 x 0 ax ax
 2  x 
 2sin  2   ax ax a 2  ax  x 2  a 2  ax  x 2
2sin 2   
 
 2  ax ax a 2  ax  x 2  a 2  ax  x 2
 
= lim
= lim 
x 0 x4  a 2  ax  x 2    a 2  ax  x 2    a  x  a  x 
 
 2
 a  x    a  x    a  ax  x  a  ax  x 
2 x 0 2 2 2
  x    x 
2sin 2 sin 2    sin 2   
  2    2 
= lim
x 0
  x 
2
= lim
2ax  ax ax 
 
x 4 sin 2    x 0
  2  2x a  ax  x  a  ax  x 2
2 2 2

 x
= 2lim
sin 4  
2  1  1
4 3 =
a  a a 
x 0
 x 4 2 8 a2  a2
  2
2
 f(0) =  a
2. f is continuous at x = 0.
 log(1  x 2 )  log(1  x 2 )  5 x .2 x  7 x  7 x.2 x  5 x
 f (0) = lim   4. lim
x 0
 sec x  cos x  x 0 x
2sin 2
  2
 2 
log(1  x )  log(1  x ) 
2
= lim  = lim
5x (2 x 1)  7 x (2 x 1)
x 0  1  cos 2 x   x 0 x
  cos x   2sin 2
    2
 cos x  log 1  x 2   log 1  x 2    1  2 x 1   5x 1 7 x 1  1
= lim    = lim     2
x 0  sin 2 x 
x 0 2  x  x x  sin x / 2 1

  x2 / 4 4
  log 1  x 2  log 1  x 2   
 cos x     5
 x2  x2 = 2(log 2)  log 
    7
= lim  
x 0
  sin 2 x  
It is discontinuous at x = 0 and it is removable.
 2 
 x 
sin 3 x log 1  3 x 
1  1  5. a = lim
= (cos 0)  2  = 2
 tan  e 
2
x0 1
 1  x 5 x
1 x

3. For f(x) to be continuous at x = 0, we must sin 3 x


 x   log(13x 3x)  3x
3

 x
3
have f (0)  lim f ( x )
x 0 = lim
 tan x   x
x 0 2
1
e5 x  1
 
2
a  ax  x  a  ax  x
2 2 2 2
 5 x  x
= lim
 x
2
5 x
x 0
ax ax
1
Std. XII : Triumph Maths 

 x  . (1)3x 10. Given, f(x) = [x]2  [x2]


3
(1)3
=  1 < x < 0, f(x) = (1)2  0 = 1
(1)  x  (1)5 x .x
2
2
x = 0, f(x) = 02  0 = 0
0 < x < 1, f(x) = 02  0 = 0
3
= x = 1, f(x) = 12  1 = 0
5 1  x  2, f ( x)  12  1  0
6. For f to be continuous at x = 2, x  2, f ( x)  12  2  1
1
f(2) = lim  x  1  2 x  2  x  3, f ( x)  12  2  1
x 0
1
x  3, f ( x)  12  3  2
= lim 1  ( x     x -2 = e1
x 0
3  x  2, f ( x)  12  3  2
7. Given function is continuous at (– , 6). x  2, f ( x)  22  4  0
 at x = 1 and x = 3, function is continuous.
2  x  5, f ( x)  22  4  0
If the function f(x) is continuous at x = 1, then
lim f ( x)  lim f ( x ) x  5, f ( x)  22  5  1
x 1 x 1
Hence, the given function is discontinuous at
 all integers except 1.
 1 + sin =a+b
2
 a+b=2 .....(i)
If the function is continuous at x = 3, then
lim f ( x )  lim f ( x )
x  3 x  3

3
 3a + b = 6 tan
12
 3a + b = 6 .....(ii)
From (i) and (ii), a = 2, b = 0
8. Since, x and | x | are continuous for all x.
 x + | x | is continuous for x  (– , ).
9. For f(x) to be continuous at x = 0, we must have
lim f(x) = f(0) = lim f(x)
x  0 x  0

lim f(x) = lim e tan 2 x / tan 3 x


x  0 x 0
 tan 2 x   tan 3 x 
 2 x  3 x 
 2x   3x 
= lim e
x  0
2
 e3
f(0) = lim f(x)
 x 0
2
 b  e3
lim f(x) = lim (1 | sin x |) a / | sin x |

x 0  x0
 a 
lim  | sin x |  
 e x 0  | sin x | 
 ea
f(0) = lim f(x)
 x 0
2
 b = e  e = ea
a 3

2
a=
3
2
Chapter 11: Differentiation

11 Differentiation 

x  1  x  1  x  1  x  1
3 5 7
 3x   
1. y= + + + +… 3. y = f 
4 12 20 28  5x  4 
  x  1  x  1  x  1 
3 5 7
1
=  x  1     .... dy  3x    d  3x   
4  3 5 7   = f    
dx  5 x  4  dx  5 x  4 
x 2 x3 x 4
Now, log(1 + x) = x – + – + ….   5 x  4  3  5  3x    
2 3 4  3x   
= f    
 5x  4  5x  4
2 3 2
x x x 4 x5  
 log(1 – x) = – x  –   – ….
2 3 4 5
1 x   dy     12  5 
 log   = log(1 + x) – log(1 – x)    = f    
1 x   dx  x  0  4   16 
 x3 x5 
= 2  x    ....     12  5 
 3 5  = tan2    
 4   16 
 x  1  x  1  x  1
3 5 7

 x–1+ + + + ….  12  5 
3 5 7 = (1)2  
 16 
1  1 x 1 
= log   12  5
2 1   x  1  =
16
1  x 
= log  
2 2 x 4. y = |cos x| + |sin x|
1  x  d x
 y= log   Since, |x| =
8 2 x dx x

dy 1  2  x    2  x 1  x  1  dy cos x d sin x d


 =      =  (cos x) +  (sin x)
2  x
2
dx 8  x    dx cos x dx sin x dx

1 2 x 2  x  x 1 cos x sin x


=     = = (–sin x) + cos x
8 x    2  x  
2
4x  2  x cos x sin x

2. y = (cos x + i sin x) (cos 3x + i sin 3x) 2 2 1 1


When x = , cos x = cos = , |cos x| =
….(cos(2n – 1)x + i sin(2n – 1)x) 3 3 2 2
Since, cos  + i sin  = ei 2 3 3
 y = eix  ei3x  ei5x …. ei(2n – 1)x and sin x = sin = , |sin x| =
3 2 2
= eix[1 + 3 + 5 + …. + (2n – 1)]
= ein x
2
 dy   3  1 
   2  = –1   + 1  
dy 2  dx  x   2   2 
 = in 2 ein x 3
dx
d2 y 2 3 1
 2
= i 2 n 4 ein x = – n4y =
dx 2
1
Std. XII : Triumph Maths 

 1  2  n d   x  1  1
5. y = 1    1   ….  1   8.  a tan 1 x  b log   = 4
 x  x   x dx   x  1  x  1
dy  1   2  3  n  x 1 
 =    1    1   ….  1    a tan–1 x + b log 
dx  x 2   x  x  x 
 x 1
 1  2   3  n
+  1     2   1   ….  1   1
 x  x   x  x =
x 1
4

 1  2  3   n 1
+  1    1     2  ….  1   + ….
 x  x  x   x =
1 1
x 2
 1 x 2  1
When x = –1, 1 + = 1 + =1–1=0
x  1 1  1 1 
=   2  2
2  x 1 x 1
 dx
 Except 1st term all terms are 0.

 dy  1 1  x 1  1 –1
  = (–1) (–1) (–2) …. (1 – n) =  log   – tan x
 dx ( x 1) 2 2  x 1 2
= (–1)n (n – 1)! 1 1
 a=– ,b=
 x 2 4
 , x0
f (x) = 1  x
1 1 1 1
6.  a – 2b = – – 2   = – – = –1
 x , x0 2 4 2 2
1  x
x 9. f(x) = cos x cos 2x cos 4x cos 8x cos 16x
0
f ( x)  f (0) 1 16
 Lf (0) = lim = lim 1  x =1 =  (2 sin x cos x cos 2x cos 4x
x  0 x0 x 0 x 32 sin x
x cos 8x cos 16x)
0
Rf (0) = lim 1  x =1 =
1

16
(sin 2x cos 2x cos 4x cos 8x
x  0 x0 32 sin x
 f(x) is differentiable at x = 0 and f (0) = 1.
cos 16x)
7. f(x) = sin(log x) 1 8
1 =  (sin 4x cos 4x cos 8x
 f (x) = cos(log x) 32 sin x
x
cos 16x)
 2x  3 
y = f  1 4
 3  2x  =  (sin 8x cos 8x cos 16x)
32 sin x
dy  2x  3  d 2x  3 
 = f    1 2
dx  3  2 x  dx
 3  2x  =  sin 16x cos 16x
32 sin x
  2x  3  
= cos  log   sin 32 x
  3  2x   =
32sin x
  3  2 x  2    2  2 x  3   3  2 x  1  sin x  32cos32 x  sin 32 x cos x 
.     f (x) =  
3  2x    2 x  3 
2
 32  sin 2 x 
  2x  3    6  4x  4x  6   1 
= cos  log      32 1  0 
  1  2 
  3  2x    3  2x   f  = 2
1  4  32  1 
  
2x  3  2
12   2 x  3  1 1 2
= cos log   =   32  2 = = 2
9  4 x2   3  2 x  32 2 2
2
Chapter 11: Differentiation
10. 1 + x4 + x8 = 1 + 2x4 + x8 – x4  dy 
= (1 + x4)2 – x4  1 dy   x dx  y 
= (1 + x4 + x2) (1 + x4 – x2)  x y = x y  2
2 2
2 
x y  dx   x y 
2 2

1  x 4  x8  
 = 1 – x2 + x4
1  x2  x4  tan 1
y

d  1  x 4  x8  d ….  ae x
 x2  y 2 
  4 
= (1 – x2 + x4)  
dx  1  x  x 
2
dx
dy dy
= 4x3 – 2x = ax3 + bx  x+y =x y ….(ii)
dx dx
 a = 4, b = –2
Diff. w.r.t.x, we get
1 1 2

11. 2x = y 5 + y 5 d2 y  dy  d 2 y d y dy
1+y +   = x + 
1 dx 2  dx  dx 2 dx dx
Let y 5 = a 2
d 2 y  dy  d2 y

1
1 1  1+y 2
+   =x 2
 y = ,
5
 a+ = 2x dx  dx  dx
a a 2   dy  2 
d y
 a2 – 2ax + 1 = 0  (y  x) 2 =   1    
dx   dx  
2x  4x  4 2  
 a= 
2 From (i), when x = 0, y  ae 2
1
 y 5 = x + x2  1 dy
From (ii), when x = 0, = 1
 
5 dx
 y = x  x2  1 
d2 y
 ae 2 2 = 2
 
dy 4  1  dx
 = 5 x  x2  1 1  2x 
dx d y
2
2  2
 2 x 1 
2
  2 =  e
 dx  x  0 a
dy
  x  
4
 x2  1 = 5 x  x2  1 x2  1
dx f g h
= 5y
2 13. f(x) = f  g h 
 dy 
 (x – 1)   = 25y2
2
f  g h 
 dx 
2 f  g h  f g h
2 2dy d 2 y  dy  dy
 (x  1)   2 +   (2x) = 25  2y  f (x) = f  g h  + f  g h 
dx dx  dx  dx
f  g h  f  g h 
dy
Dividing both sides by 2 , we get
dx f g h
d 2
y d y + f  g h 
(x2  1) 2 + x = 25y
dx dx f  g h 
 k = 25 =0+0+0
 y
tan 1   ….[ f, g, h are polynomials of 2nd degree,
12. x 2  y 2 = ae ….(i) x
f  = g = h = 0]
Diff. w.r.t.x, we get =0
1  dy 
 2x  2 y  y y1 y2 cos ax  a sin ax  a 2 cos ax
2 x2  y 2  dx 
14. y3 y4 y5 = a 3 sin ax a 4 cos ax  a 5 sin ax
 dy 
 y
tan 1  
x 1  x dx  y  y6 y7 y8  a 6 cos ax a 7 sin ax a 8 cos ax
= ae .  
y2 x2  =  a2  0 ….[ C1  C3]
1 2 
x   =0
3
Std. XII : Triumph Maths 

15. y = sin cos 1{sin(cos 1 x)} f(x) = x3 + ex/2


 f(0) = 1
      0 = f1(1)
= sin cos 1 sin   sin 1 x  
  2    g(1) = 0 ….[ g(x) = f1(x)(given)]
1 1
= sin[cos (cos(sin x)] From (i), we get
= sin(sin1 x) = x 1
dy g(1) =
 =1 
f (0)
dx
Now, f(x) = x3 + ex/2
 dy 
   1=1 1
 dx  x   f (x) = 3x2 + ex/2
2 2
1
1  f (0) =
16. 8 f(x) + 6f   = x + 5 ….(i) 2
x 1
1  g(1) = =2
Replacing x by , we get 1/ 2
x
1 1 19. y = f(x3)
8f   + 6f(x) =  5 dy
 x x  = f (x3).3x2 = 3x2 tan(x3)
dx
1 1
 6f(x) + 8f   =  5 ….(ii) z = g(x5)
 x x
(i)  8  (ii)  6 gives dz
 = g (x5).5x4 = 5x4 sec(x5)
6 dx
64 f(x)  36 f(x) = 8x + 40   30
x dy
dy 3x 2 tan x 3 3tan x 3

6
28 f(x) = 8x   10  = dx = =
x dz dz 5 x 4 sec x 5 5 x 2 sec x 5
x2  dx
6 
Given, y = x2f(x) =  8 x   10 
28  x 
20. 1  x 6  1  y 6 = a3(x3  y3)
1
 y= (8x3  6x + 10x2) Put x3 = sin  and y3 = sin 
28
dy 1  1  sin 2   1  sin 2  = a3(sin   sin )
 = (24x2  6 + 20x)
dx 28
 cos  + cos  = a3(sin   sin )
 dy  1 2 1
   = (24  6  20) =  =    
d x
  x 1 28 28 14  2 cos   cos  
 2   2 
17. f(x3) = x5
Diff. w.r.t. x, we get    
= a 3 .2sin   cos  
f (x3) . 3x2 = 5x4  2   2 
5    3
 f (x3) = x2  cot  =a
3  2 
5
 f (27) = f  (33) = (3)2 = 15     = 2 cot1 a3
3
 sin1 x3  sin1 y3 = constant
18. Since, g(x) is the inverse of f(x). Diff. w.r.t. x, we get
 f[g(x)] = x
3x 2 3y2 dy
 f   g( x)  g ( x) = 1   =0
1  x6 1  y6 dx
 f   g(1)  g (1) = 1
1 dy x 2 1  y6
 g(1) = ….(i)  =
f (g(1)) dx y 2 1  x6

4
Chapter 11: Differentiation
21. Let f(x) = px2 + qx + r 1
sin x cos x
 f(1) = f(1)  p + q + r = p  q + r  q = 0 f ( x) tan x
 =2  x2
 f(x) = px2 + r x x
2 sin 2 x 5 x
 f (x) = 2px
 f (a) = 2ap, f (b) = 2bp and f (c) = 2cp 1 cos x cos x 1 sin x  sin x
Since, a, b, c are in A.P. + x sec x 2
x 3
+ x tan x 3x 2
 2ap, 2bp, 2cp are in A.P. 2 2cos 2 x 5x 2 sin 2 x 5

 f (a), f (b), f (c) are in A.P. 1 0 1 1 1 1 1 0 0


f ( x)
 lim = 2 1 0+ 0 1 0+ 0 0 0
dx
x 0 x
22. = sec  tan  + sin  2 0 0 2 2 0 2 0 5
d
=  2  2 + 0 = 4
dy
and  n sec n 1  .sec  tan   n cos n 1  .( sin )
d 24. Since, g is the inverse of f.
= n secn  tan   n cos n 1  sin   f[g(x)] = x
Diff. w.r.t.x, we get
dy
dy d n sec n  tan   n cos n 1  sin  f (g(x)) g(x) = 1
  
dx dx sec  tan   sin  1
 g(x) = = 1 + [g(x)]5
d f (g( x))
Dividing Nr and Dr by tan , we get
sin x sin x sin x
25. y=   ... 
dy n(sec n   cos n ) sin x sin 2 x sin 2 x sin 3 x sin nx sin(n  1) x

dx sec   cos  sin(2 x  x) sin(3x  2 x) sin((n  1) x  nx)
=   ... 
2 n 2
 dy  n (sec   cos )
n 2 sin x sin 2 x sin 2 x sin 3 x sin nx sin(n  1) x
   
 dx  (sec   cos ) 2 sin 2 x cos x cos 2 x sin x sin 3x cos 2 x
=  
sin x sin 2 x sin x sin 2 x sin 2 x sin 3 x
n 2 [(sec n   cos n ) 2  4sec n  cos n ]
 
cos3x sin 2 x
 .... 
sin(n  1) x cos nx cos(n  1) x sin nx

(sec   cos ) 2  4sec .cos  sin 2 x sin 3x sin nx sin (n  1) x sin nx sin (n  1) x
n 2 ( y 2  4) = cot x  cot 2x + cot 2x  cot 3x
= + …. + cot nx  cot(n+ 1) x
x2  4
2  y = cot x  cot(n + 1)x
 dy 
 (x + 4)   = n2 (y2 + 4)
2 dy
 dx   =  cosec2x  [ cosec2(n + 1)x] (n + 1)
dx
= (n + 1) cosec2(n + 1)x  cosec2x
x sin x cos x
23. f(x) = x 2
tan x  x3 a
26. If |r| < 1, a + ar + ar2 + …. +  =
2 x sin 2 x 5x 1 r
sin 2 x
1 sin x cos x  sin2x + sin4x + sin6x + …. =
1 sin 2 x
 f (x) = 2 x tan x  x3
sin 2 x
2 sin 2 x 5x = = tan2x
cos 2 x
x cos x cos x x sin x sin x 2x
 y = e tan
+ x 2 sec 2 x  x3 + x 2
tan x 3 x 2
dy 2 2
2 x 2cos 2 x 5x 2 x sin 2 x 5  = e tan x .2 tan x sec2x = 2e tan x tan x sec2x
dx
5
Std. XII : Triumph Maths 
1 1 f (1) n(1) n 1
27. y = tan1 + tan1 2 = = n = nC1
1 x  x 2
x  3x  3 1! 1
+ tan1 2
1
+ …. to n terms f (1) n(n  1)(1) n  2 n(n  1) n
= = = C2
x  5x  7 2! 2! 2!
1 1 f (1) n(n  1)(n  2)(1) n 3 n(n  1) (n  2)
= tan1 + tan1 = =
1  (1  x) x 1  ( x+ 2) ( x+1) 3! 3! 3!
n
1 = C3
+ tan1 + …. to n terms
1  ( x+ 3) ( x+ 2) f (1) f (1) f (1) f n (1)
 f(1)  +  + ….+(1)n
 ( x  1)  x   ( x  2)  ( x + 1)  1! 2! 3! n!
= tan1   + tan1   n n n n
= C0  C1 + C2  C3 + …. + (1) Cn nn
1  ( x  1) x  1  ( x  2) ( x + 1) 
=0
 ( x  3)  ( x  2) 
+ tan1   + …. to n terms 30. p = a2cos2 + b2sin2
1  ( x  3) ( x + 2) 
dp
= tan1(x + 1)  tan1 x + tan1(x + 2)  = a2.2 cos  ( sin ) + b2.2 sin  cos 
d
 tan1(x + 1) + tan1(x + 3)  tan1(x + 2) = (b2  a2) sin 2
+ …. + tan1(x + n)  tan1(x + (n  1))
d2p
 y = tan1(x + n)  tan1 x  2
= 2(b2  a2) cos 2
d
dy 1 1 = 2(b2  a2) (cos2  sin2 )
 = 
dx 1  ( x  n) 2
1  x2
d2p
 4p + = 4a2 cos2 + 4b2 sin2 
 dy  1 d2
   = 1
d x
  x 0 1  n2 + 2(b2  a2) (cos2   sin2 )
1  1  n2 = cos2 (4a2 + 2b2  2a2)
=
1  n2 + sin2 (4b2  2b2 + 2a2)
n2 = cos2 (2a2 + 2b2) + sin2 (2a2 + 2b2)
=
1  n2 = (2a2 + 2b2) (cos2  + sin2 )
= 2a2 + 2b2
28. y = a sin(bx + c)
= 2(a2 + b2)
 
 y1 = a cos(bx + c).b = ab sin   bx  c  = 2c2 ….[ a2 + b2 = c2 (given)]
2 
2
 y2 =  ab sin(bx + c).b = ab sin( + bx + c)
 3 
y3 =  ab2 cos(bx + c).b = ab3 sin   bx  c 
 2 
3 4
y4 =  ab ( sin(bx + c).b) = ab sin(2 + bx + c)
 4 
= ab4 sin   bx  c 
 2 
 n 
In general, yn = abn sin   bx  c 
 2 
29. f(x) = xn
f (x) = nxn1
f (x) = n(n  1) xn2
f ( x) = n(n  1) (n  2)xn3
 f(1) = 1n = 1 = nC0
6
Chapter 12: Applications of Derivatives

12 Applications of Derivatives

1. Let f(x) = ax4 + bx3 + cx2 + dx 4


3
 f(0) = 0  y
 tan =
and f(3) = a.34 + b.33 + c.32 + d.3 4 1 4 3
= 81a + 27b + 9c + 3d y
= 3(27a + 9b + 3c + d) 4  3y
1=
=30 y  12
 f(0) = f(3) = 0  y = 2 or y = 8
f(x) is a polynomial function, it is continuous Putting y = 2 in the equation of the curve,
and differentiable. we get
Now, f (x) = 4ax3 + 3bx2 + 2cx + d 1
x=
By Rolle’s theorem, there exist at least 1 root 2
of the equation f (x) = 0 in between 0 and 3. 1 
 the point of contact is  ,  2  .
2 2 
2. The equation of the curve is y = x + bx + c.
dy 1
 = 2x + b ….(i) 4. f(x) = tan1x  log x
dx 2
Since, the curve touches the line y = x at (1,1). 1 1 ( x  1) 2
 f (x) =  = 
 [2x + b](1, 1) = 1 1  x2 2x 2 x(1  x 2 )
 2(1) + b = 1 Now, f (x) = 0  x = 1
 b = 1 1  3.14
Substituting the value of b in equation (i), f(1) = tan1 1  log 1 = = = 0.785
we get 2 4 4
Since, we are finding maxima on an interval
dy
= 2x  1  1 
dx  , 3  . We have to find the value of f(x) at
Since, gradient is negative.  3 
 1 

dy
dx
<0 
 3
 and 3 
 2x  1 < 0  1  1 1 1  1
f  = tan + log 3 =  log 3
 2x < 1  3 3 4 6 4
1
x< 3.14 1 1
2 =  log 3 = 0.52 +  1.0986
6 4 4
3. The equation of the parabola is y2 = 8x. = 0.52 + 0.2746 = 0.7946
 1

dy
2y = 8
dx
  1
f ( 3) = tan1 3  log 3 =  log 3
4 3 4
dy 8 4 3.14
 = = = m1 =  0.2746
dx 2y y 3
= 1.04  0.2746
Slope of given line, m2 = 3
= 0.7654
m1  m 2  1
Since, tan  =  the greatest value of f(x) is + log 3.
1  m1m 2 6 4
1
Std. XII : Triumph Maths 
 f(x) is a polynomial function, it is continuous
5. += and differentiable.
2
   There exists at least one value of x in (0, 1) at
 cos  = cos     = sin  which f (x) = ax2 + bx + c = 0
2 
 one root of the equation ax2 + bx + c = 0 has
1 value between 0 and 1.
Let y = cos  cos  = cos  sin  = sin2
2
8. f(x) = sin x(1 + cos x)
dy 1
 = cos 2.2 = cos 2 = sin x + sin x cos x
d 2
1
dy   f(x) = sin x + sin 2x
Now, = 0  cos 2 = 0  2 = 2
d 2
x 3x
  f (x) = cos x + cos 2x = 2 cos cos
= 2 2
4
x 3x
d2 y  f (x) = 0  cos = 0 or cos = 0
Also, =  2 sin 2 =  2 < 0 2 2
d 2 x  3x 
  = or =
 y is maximum when  = 2 2 2 2
4 
  x =  or x =
 it is maximum at  = 3
4 f (x) =  sin x  2 sin 2x < 0, only when
6. Let P(x1, y1) be the point on the curve at which 
x=
tangent is drawn. 3
The equation of the curve is xy = c2. 
dy  The maximum value of function is at
 x + y(1) = 0 3
dx
 3  1 3 3 3 3
 dy  y  f = 1   =  =
   =  1 3 2  2 2 2 4
 dx ( x1 , y1 ) x1
9. f(x) = sin4x + cos4x
 The equation of the tangent is
= (sin2x + cos2x)2  2 sin2x cos2x
y
y  y1 =  1 (x  x1) 1
x1  f(x) = 1  sin22x
2
 yx1  x1y1 =  xy1 + x1y1 1
 xy1 + yx1 = 2x1y1  f (x) =  (2 sin 2x cos 2x)  2
2
x y
 + =1 f (x) =  2 sin 2x cos 2x
2 x1 2 y1
Now, f (x) = 0
 The tangent meets the X-axis in the point  sin 2x = 0 or cos 2x = 0
A(2x1, 0) and the Y-axis in the point B(0, 2y1) 
 P is the mid point of AB  x = 0 or x =
4
 The ratio is 1 : 1
Since, f (x) = 2 sin 2x cos 2x
ax3 bx 2  f (x) =  sin 4x
7. Let f(x) =   cx  d  f(x) =  4 cos 4x
3 2
 f (x) = ax2 + bx + c For x = 0, f(x) =  4 < 0
a b 2a  3b  6c  6d 
Now, f(1) = + + c + d = For x = f(x) = 4 > 0
3 2 6 4
0  6d 
 f(1) = = d ….[ 2a + 3b + 6c = 0]  At x = , f(x) is minimum
6 4
Also, f(0) = d 1 1 1
 Minimum value of f(x) = 1  (1) = 1  =
 f(0) = f(1) 2 2 2
2
Chapter 12: Applications of Derivatives

10.
2 3
2( x 3)  27 is minimum when  x2 3
3
is b
 27  f(x) is minimum when tan2x =
minimum. a
Since, (x2  3)3 + 27  Minimum value of f(x) = a (1 + tan2 x)
2

= x6  9x4 + 27x2 + b2(1 + cot2 x)


= x2(x4  9x2 + 27)  b  a
= a2 1   + b2 1  
 9  27 
2
 a  b
= x2  x 2      0, for all x
 2 4  ab 2ab
= a2  b  
 Minimum value of (x2  3)3 + 27 is 0.  a   b 
 Minimum value of 2( x
2  3)3  27
= 20 = 1 = a(a + b) + b(a + b) = (a + b)2

11. f(x) = 3 cos|x|  6ax + b ax  b ax  b


13. y= = 2
= 3 cos x  6ax + b ( x  4) ( x  1) x  5x  4
….[ cos ( x) = cos x] dy ( x 2  5 x  4)a  (ax  b) (2 x  5)
 =
 f (x) =  3 sin x  6a dx ( x 2  5 x  4) 2
The function f(x) is increasing for all x  R. For extreme (i.e., maximum or minimum)
 f (x) > 0
dy
  3 sin x  6a > 0 =0
dx
 6a <  3 sin x
1  a(x2  5x + 4)  (ax + b) (2x  5) = 0
 a <  sin x Since, y has an extreme at P(2, 1)
2
1  x = 2 satisfies above equation
a< 
2 a(4  10 + 4)  (2a + b) (1) = 0
  2a + 2a + b = 0
12. Let f(x) = a2sec2x + b2cosec2x
 f (x) = a2.2 sec x sec x tan x b=0
+ b2.2 cosec x ( cosec x cot x) x = 2, y = 1 satisfies the equation of the curve
= 2a2 sec2 x tan x  2b2 cosec2x cot x a(2)  b
 1=
Now, f (x) = 0 4  10  4
 2a2 sec2 x tan x  2b2 cosec2 x cot x = 0 2a  0
 1= = a
1 sin x 1 cos x 2
2a2. 2
 = 2b2 2 
cos x cos x sin x sin x  a=1
4 2
sin x b  a = 1, b = 0
 =
cos 4 x a 2
14. Let f(x) = x tan x
b2
 tan4x = 2  f (x) = x sec2 x + tan x
a
 
b a  f (x) > 0 for x   0, 
 tan2x = and cot2x =  2
a b
Also,  
 f(x) is increasing in the interval  0, 
f (x) = 2a 2 sec2 x.sec2 x  tan x.2sec x sec x tan x   2
cosec 2 x (cosec 2 x)  
2b 2  Since, 0 <  <  <
 2
  cot x.2cosec x ( cosec x cot x) 
 f() < f()
= 2a 2 sec4 x+ 2sec2 x tan 2 x 
  tan  <  tan 
 2b 2 cosec4 x  2cosec2 x cot 2 x   tan 
 <
 f (x) > 0 for all x.  tan 

3
Std. XII : Triumph Maths 
15. The point of intersection of the given curves is 18. f(x) = x3  12ax2 + 36a2x  4
(0, 1). Diff. w.r.t. x, we get
Now, y = 3x f (x) = 3x2  12a(2x) + 36a2(1)
dy = 3x2  24ax + 36a2
  3x log 3
dx Now, f (x) = 0  3x2  24ax + 36a2 = 0
 dy   x2  8ax + 12a2 = 0
   = log 3 = m1 (say)
 dx  (0,1)  (x  2a) (x  6a) = 0
Also, y = 5x  x = 2a or x = 6a
dy Also, f (x) = 6x  24a
  5x log 5 [f (x)]x=2a = 12a  24a =  12a < 0
dx
[f (x)]x=6a = 36a  24a = 12a > 0
 dy 
    log 5  m 2 (say)  Maxima at p = 2a and minima at q = 6a
 dx (0,1) 3p = q2 ….(given)
m1  m 2 log3  log 5  3  2a = (6a)2
 tan  = =
1  m1m 2 1  log 3log5 1
 6a = 36a2  a=
2 6
16. Let f(x) = ax + bx + c
 f (x) = 2ax + b 19. The functions ex , sin x, cos x are continuous
since,  and  are roots of the equation and differentiable in their respective domains.
ax2 + bx + c = 0  f(x) is continuous and differentiable
 f() = f() = 0   5 
Also f   = 0 = f  
 f(x) being a polynomial function in x, 4  4 
it is continuous and differentiable. Now,
 There exists k in (, ) such that f (k) = 0 f (x) =  ex (sin x  cos x) + ex (cos x + sin x)
b = ex ( sin x + cos x + cos x + sin x)
 2ak + b = 0,  k=
2a = 2ex cos x
But k  [, ] Also, f (x) = 0  cos x = 0
 <k<    5 
b  x=   , 
 < < 2 4 4 
2a
20. ay2 = x3 ….(i)
17. f(x) = tan1 (sin x + cos x)
Diff. w.r.t.x, we get
1
 f (x) =  (cos x  sin x) dy
1  (sin x  cos x)2 2ay = 3x2
dx
  dy 3 x 2
2 cos  x    =
 4 dx 2ay
=
1  (sin x  cos x ) 2
2ay
For f(x) to be increasing, f (x) > 0  slope of the normal = 
3x 2
  Since, the normal to the given curve makes
 2 cos  x   > 0
 4 equal intercepts with the axis.
  2ay
 cos  x   > 0   2 = 1
 4 3x
   3x 2
 <x+ < y=
2 4 2 2a
3  3x 2
  <x< Substituting y = in (i) and solving, we get
4 4 2a
    4a 8a 
 f(x) is an increasing function in   ,  . the point  ,  .
 2 4  9 27 

4
Chapter 13: Integration

13 Integration

5 x10 x
1. Let I =  dx 3. Let I =  sin 1 dx
x16 ax
Put x = a tan2t
5 x 1
10
 dx = 2a tan t sec2t dt
=  . dx
x10 x11 a tan 2 t
 I =  sin 1  2a tan t sec2 t dt
5 1 a  a tan 2 t
=  x10
 1. 11 dx
x =  sin 1 (sin t)  2a tan t sec 2 t dt
5 = 2a  t tan t sec 2 t dt
Put 1 t
x10
 d  
 5(10)x11 dx = dt = 2a  t  tan t sec2 t dt    (t)  tan t sec2 t dt  dt 
  dt  
1 1
 dx =  dt  tan 2 t tan 2 t 
x11
50 = 2a  t.   1. dt 
 2 2 
1
 1 
 I= t 2
   dt
 50 
= a  t tan 2 t   (sec2 t  1)dt 

x
1 t 3/2 = a  t tan 2 t  tan t  t   c , where t = tan1
=  . +c a
50 3 / 2
x x x x
3/2 = a  tan 1   tan 1 +c
1  5 
=   1 10  +c a a a a
75  x 
4. Let I =  cosec x 1 dx
2. Multiplying Nr and Dr by sin 3x, we get 1
cos5 x  cos 4 x =  sin x
 1dx
 1  2cos3x dx
1  sin x
=
sin 3 x cos5 x  sin 3 x cos 4 x
 sin 3x  2sin 3x cos3x dx
=  sin x
dx

sin 3 x  cos5 x  cos 4 x  1  sin x 1  sin x


=  dx =  
sin x 1 sin x
dx
sin 3 x  sin 6 x
cos x
 3x 3 x  9x x =  dx
 2sin cos  2cos cos  sin x  sin x
2
2 2  2 2
=  dx
9x 3x Put sin x = t
2cos sin
2 2  cos x dx = dt
3x x
=   2cos cos dx  I= 
1
dt
2 2
t2  t
=   cos 2 x  cos x  dx 1
1 
=  1 
dt
=   sin 2 x  sin x  + c t t 
2

2  4 4
1
Std. XII : Triumph Maths 
1 t2 1
=  2 2
dt I2 =  t 4  1 dt
 1 1
t     1
 2 2 1 2
=  t dt
1 1
= log t   t 2  t  c , where t = sin x t  2
2

2 t
1  1
1 =  1  2  dt
= log sin x +  sin 2 x  sin x + c  1
2
 t 
2 t   2
 t
1 1
5. Let I =  tan x dx =  2 dm , where t + = m
m 2 t
Put tan x = t2 1
t  2
1 m 2 t 1
 sec2x dx = 2tdt = log = log
2 2 m 2 2 2 1
t  2
2t t
 dx = dt
1 t4 1 t 2  2t  1
= log
2t 2 2 t 2  2t  1
 I =  t2 .
1  t4
dt
 From (i),
t 2 1  t2 1 1 t 2  2t  1
= 2 dt I= tan1   + log +c
1  t4 2  2t  2 2 t 2  2t  1
t2  1  t2 1 1  tan x 1 
=  t 4  1 dt =
2
tan1 
 2 tan x 
 
t2  1 t2 1 1 tan x  2 tan x  1
=  t 4  1 dt +  t 4  1 dt +
2 2
log
tan x  2 tan x  1
+c

= I1 + I2 (say) ….(i)
 x 1 x  dx
1/ 2
13/ 2 5/ 2
6. Let I =
t 12
I1 = t 4
1
dt
=  x .(1  x ) .x dx
5 5/2 1/ 2 3/ 2

1
1 Put 1  x5/2  t
=  t 2 dt
1 5 3/2
t2  2  x dx  dt,
t 2
1  1 2
 x 3/ 2 dx = dt
=  1
2 1  2  dt
 t 
5
t   2 2
 t  I =  (t  1)2 .t1/ 2 . dt
5
1 1
= y 2
2
dy , where t  = y
t
2
=   t 5/2  2t 3/2  t1/2  dt
5
 1 2 2 4 2 
1  y  1 tt  =  t 7/ 2  t 5/ 2  t 3/ 2  + c, where t = 1  x 5/ 2
5 7 5 3
= tan  =1
tan 1
  

2  2 2  2  2 2
1 x5/ 2   54 1 x5/ 2 
7/ 2 5/ 2
  =
5  7
1  t2 1 2 3/ 2 
=
2
tan 1 
 2t 
 
3
1  x5/ 2   + c

2
Chapter 13: Integration
tan x 2  2 tan x 1 
7. Let I =  1  tan x  tan 2
x
dx =
3
tan1 
 3 
 + c1

tan x  From (i),


=  sec 2
x  tan x
dx
2  2 tan x 1 
I=x tan1  + c
sin x 3  3 
cos x
=  dx  A 3
1 sin x
  A=3
cos 2 x cos x
sin x cos x  x 1  1
=  1 sin x cos x dx 8. Let I =  log   2
 x 1 x 1
dx

1
sin 2 x  x 1 
Put log  =t
=  2 dx  x 1
1
1  sin 2 x  1 1 
2     dx = dt
 x 1 x 1
sin 2 x
=  dx 1 1
2  sin 2 x  dx = dt
x 1
2
2
2  sin 2 x  2
=  2  sin 2 x
dx

1 1 1   x  1 
I =  t. dt  t 2  c =  log 
2

 +c
2 4 4   x  1  
 2 
=  1   dx 1
 2  sin 2 x   A=
4
= x  I1 (say) ….(i)
1
2 9. Let I =  dx
I1 =  x  2x  2
2
dx 2
2  sin 2 x
1
2
Put tan x = t  sec x dx = dt  dx =
1
dt
=  ( x  1) 2
 1
2
dx
1  t2 
2 tan x 2t Put x + 1 = tan 
sin 2x = =
1  tan x 1  t 2
2  dx = sec2  d
2 1 sec 2 
 I1 =   dt  I= d
2t 1  t 2 (tan 2   1) 2
2
1  t2 sec 2  x2  2x  2
1
=  sec4  d x+1
=  2 dt
t  t 1 =  cos 2  d 
1
=  dt 1
=  (1  cos 2)d
1
1 3
t t 
2
2
4 4 1  sin 2 
=   c
= 
1
2
dt 2 2 
 1 
2
 3  1
t     = ( + sin  cos ) + c
 2   2  2
1  1 x 1 1 
 1 =  tan ( x  1)  2  c
2 t  2  x  2 x  2 x2  2 x  2 
= tan1  2+c
1
3  3  1  1 x 1 
  =  tan ( x  1)  2 +c
 2  2 x  2 x  2 
3
Std. XII : Triumph Maths 
1 = b2 ( cos2 x)  a2(sin2 x)
10. Let I =  dx
cos x  sin 6 x
6 1
  =  b2 cos2x  a2sin2x
Since, a3 + b3 = (a + b)3  3ab(a + b) f ( x)
 cos6x + sin6x = 1  3 sin2x cos2x 1
 f(x) =
….[ a + b = cos2x + sin2x = 1] a sin x  b 2 cos 2 x
2 2

1
 I =  1  3sin 2 2
dx 12. Let I =  esin   log (sin )  cosec 2   cos  d
x cos x
Put sin  = t
1
=  3
dx  cos  d = dt
1  sin 2 2 x  1
4  I =  e t log t  2  dt
 t 
4
=  dx  1 1 1
4  3sin 2 2 x =  e t log t    2  dt
 t t t 
4cosec2 2 x
=  4cosec2 2 x  3 dx  1
= e t  log t    c
 t
4cosec 2 2 x
=  4(1 cot 2 2 x)  3 dx  d 1 1 1 
….   log t     2 
1  dt  t t t 
=  ( 4 cosec2 2x) dx  1 
4cot 2 2 x 1 = esin  log (sin )   c
Put 2 cot 2x = t  sin  
  4 cosec2 2x dx = dt = esin   log(sin )  cosec   c
1
 I =  2 dt
t 1  cos   sin    1  tan  
13. log    log  
=  tan1(t) + c  cos   sin    1  tan  
=  tan1 (2 cot 2x) + c  
 log tan    
 2cos 2 x  2sin 2 x  4 
=  tan1   +c
 2sin x cos x  1  
1 Since,  sec 2d  log tan    
=  tan (cot x  tan x) + c 2 4 
= tan1(tan x  cot x) + c d  
 log tan      2sec 2 ….(i)
1 d 4 
11.  f ( x)sin x cos x dx = 2(b2  a 2 ) log[f ( x)] + c Integrating the given expression by parts, we
d  1  get
  log  f ( x)   c  = f(x) sin x cos x
dx  2(b  a )
2 2
   1 sin 2
I  log tan      sin 2    2sec 2 d
1 1 4  2 2
  f (x) = f(x) sin x cos x
2(b  a ) f ( x)
2 2 ….[From (i)]
f ( x ) 1  
 = 2(b2  a2) sin x cos x  sin 2 log tan       tan 2 d
[f ( x )] 2 2 4 
Integrating on both sides, we get 1   1
= sin 2 log tan     – log (sec 2)  c
f ( x) 2 4  2
 f ( x)2 dx = (b  a )  2sin x cos x dx
2 2

x  4
1 14. Let =t
  = (b2  a2)  2sin x cos x dx 3x  4
f ( x)
(3 x  4)  (3 x  4) t  1
 =
= b 2  2sin x cos x dx  a 2  2sin x cos x dx (3 x  4)  (3 x  4) t  1

4
Chapter 13: Integration
6x t  1 t2
 =
8 t  1  I1 = 1 t2
.2t dt

4  t 1  t2
x=   = 2 dt
3  t 1 1 t
4t  4 1  t2 1
x+2= +2 =  2 dt
3t  3 1 t
4t  4  6t  6 2t  10  1 
= = =  2  1  t   dt
3t  3 3t  3  1  t
 x  4   1 
Given, f  = 2   1  t  dt
= x + 2 1 t 
 3x  4 
2t  10 1 t2 
 f(t) = = 2  log(1  t)  t   + c1
3t  3  1 2
2 t 5  1 
=   =  2  log(1  x )  x  x  + c1
3  t 1   2 
 From (i),
2  t 1  4 
=   I = x log (1  x )
3  t 1 
1  1 
2 4  2 8  .2  log (1  x )  x  x  + c
= 1  =  2  2 
3  t  1  3 3(t  1)


2
f(x) = 
8  
= (x  1) log 1 x  x  x  c
1
2
3 3( x  1) 3
1
x
16. P(x) =  3 dx, Q(x) =  3 dx
2 8  x x 2
x  x2
  f ( x)dx =   3  3( x  1)  dx x3 1
 P(x) + Q(x) =  3 dx
2 8 x  x2
= x  log|x  1| + c
3 3 x3  x 2  x 2 1
=  dx
x3  x 2
15. 
Let I =  log 1  x dx  
=  1  3
x2  1 
dx
2 


=  log 1  x (1)dx   x x 
=x+I ….(i)
d
= log(1  x )  1dx    log 1  x
 dx
  
1dx  dx x 1
I=  2
2
dx
x ( x 1)
1  1  x 2 1
= log(1  x ) .x  1   x dx
x 2 x Put =
A B C
+ + 2
x ( x  1)
2
x 1 x x
1 x  x2 + 1 = Ax 2  Bx( x 1)  C( x  1) ….(ii)
= x log(1  x ) + 
2 1 x
dx
Putting x = 0 in (ii), C = 1
1 Putting x = 1 in (ii), A = 2
= x log(1  x ) + I1 ….(i)
2 Putting x = 1 in (ii), B = 1
x  2 1 1 
 I =    2  dx
Now, I1 = 1 x
dx
 x 1 x x 
Put x = t2, 1
= 2 log|x  1|  log|x| +
 dx = 2t dt x
5
Std. XII : Triumph Maths 
 From (i), 1 1
1
=  1 2
  dt
t
P(x) + Q(x) = x + 2 log|x  1|  log|x| + + c  1 4
x t 2
t
 (P + Q) (2) = P(2) + Q(2) 1
1
= 2 + 2 log 1  log 2 + + c
=  1 2t  5t 2
dt
2
1 1

5 5
=  log 2 + c
 5
….  (P  Q) (2)   = 
5
 2 1
dt
2 2  2 t  t
2

 c = log 2 5 5
 P(x) + Q(x) = x + 2 log|x  1|  log|x| 1 1
1
=–
5
 2 1 4
dt
+ + log 2 t  t 
2

x 5 25 25
1 1 1
 P(3) + Q(3) = 3 + 2 log 2  log 3 + + log 2
3
=
5
 2 2
dt
 1    2
10 8 t   
= + log  5  5
3 3
1 1 2t 1
= log t   t2   + c
2a sin x  bsin 2 x 5 5 5 5
17. Let I =  (b  a cos x)3
dx
1 1 1 1 2 1
(a  b cos x) = log     c
= 2 sin x dx 5 x 1 5 ( x  1) 2
5( x  1) 5
(b  a cos x)3
Put b + a cos x = t 1 1 1 x2  4
=  log   +c
  a sin x dx = dt 5 x 1 5 5( x  1) 2
1
 sin x dx =  dt 1  x cos x
19. Let I =  dx
 
a
x 1   xesin x 
2

tb
a  b 
 a   1
 I = 2    dt esin x (1  x cos x)
=  dx
 
t3  a
xesin x 1   xesin x 
2

2 a  bt  b
2 2

a 
= dt
at 3 Put xesin = t
x

2  [xesin x cos x + esin x(1)] dx = dt


=  2  (a 2  b 2 ) t 3  bt 2  dt
a
 esin x (1 + x cos x) dx = dt
2  a 2  b2 b 
= 2   +c 1 1
a  2t 2 t   I=  t(1  t 2
)
dt =  t(1  t) (1  t) dt
1 a 2  b2 2b
= 2 + 2 +c 1 A B C
a t 2
a t Put = + +
t(1  t) (1  t) t 1 t 1 t
1
18. Let I =  ( x  1) x2  4
dx  1 = A(1  t) (1 + t) + Bt(1 + t) + Ct(1  t)
….(i)
1 1 Putting t = 0 in (i), we get
Put x  1 = ,  dx =  2 dt
t t A=1
1  1
 I=    2  dt
Putting t = 1 in (i), we get
1 1 
2
 t  1
  1  4 B=
t t  2
6
Chapter 13: Integration
Putting t = 1 in (i), we get  x2  x + 1 = t2  2tx + x2
1 t2 1
C=  x=
2 2t  1
1 1/ 2 1/ 2  dx (2t  1).2t  (t 2  1).2
 I =     =
 dt dt (2t  1)2
 t 1 t 1 t 
2t 2  2t  2
1 1  dx = dt
= log|t|  log|1  t|  log|1 + t| + c (2t  1)2
2 2
1 2t 2  2t  2
1 t2 1 x 2 e2sin x  I =   dt
= log  c  log +c t (2t  1)2
2 1  t2 2 1  x 2 e 2sin x
t2  t 1
= 2 dt
t(2t  1)2
 tan(sin
1
20. Let I = x)dx
t2  t 1 A B C
  x  Put = + +
=  tan  tan 1    dx t(2t  1) 2
t 2t  1 (2t  1) 2
  1  x  
2
 t2  t + 1 = A(2t  1)2 + Bt(2t  1) + Ct
x ….(i)
=  dx
1  x2 Putting t = 0 in (i), we get
Put 1  x2 = t,   2x dx = dt, A=1
1 1
 x dx =  dt Putting t = in (i), we get
2 2
1  1 3
 I =     dt C=
2
t  2
Putting t = 1 in (i), we get
1
=  dt =  t + c =  1 x 2 + c 1=A+B+C
2 t 3
B=1–1–
21. Let I =  sec 25/13 x cos ec 27/13 x dx 2
3
B=
=  cos 25/13 x sin 27/13 x dx 2
25 27 52 1 3 3 1 
Now   =  = 4  I = 2    . 2 
dt
13 13 13  t 2(2t  1) 2 (2t  1) 
Multiplying and dividing by cos4x, we get 3 3 1
= 2 log t  log(2t  1)  . +c
I =  cos 4 x cos 25/13 x sin 27/13 x sec 4 x dx 2 2 2t  1
=  tan 27/13 x (1+ tan 2 x)sec2 x dx 3 1 3 
= 2 log t  log(2t  1)   + c,
2 2  2t  1 
Put tan x = t,  sec2x dx = dt
 I =  t 27/13 (1+ t 2 )dt where t = x + x2  x  1
and 2t  1 = 2x  1 + 2 x 2  x  1
t + t 1/13  dt
27/13
=
3 1
13 14/13 13 12/13  P = 2, Q =  , R = 
= t  t +c 2 2
14 12
1
13 13
=  (tan x)14/13  (tan x)12/13 + c 23. Let I =  (1  x 2
) 1  x2
dx
14 12
1 1
1 Put x = ,  dx =  dt
22. Let I =  x x2  x  1
dx t t2
1  1
Put x + x2  x  1 = t
 I =  1
  2  dt
1  t 
1  2  1  2
 x2  x  1 = t  x  t  t

7
Std. XII : Triumph Maths 
t dt log x
=  25.  ( x  1) dx =  log x .( x  1) 2 dx
t 2
 1 t  1 2 2

 x 1
1
1  x  1
1
Put t2  1 = m2
= log x.  . dx
 2t dt = 2m dm, 1 x 1
 t dt = m dm log x  1 
mdm = +   dx
 I =  x 1  x( x 1) 
 m  2 m2
2
log x 1 1 
= +    dx
1 x 1  x x 1 
=  dm
 
2
m2  2 log x
= + log |x|  log |x + 1| + c
1  m  x 1
= tan 1  c
2  2 26. In =  sin n x dx
1  t2 1 
= tan1  c =  sin n 1 x .sin x dx
2  2 

= sinn1x  sin x dx
 1 
 1  d 
1     sin n 1 x   sin x dx  dx
2
= tan1  x c
2  2   dx 
  n1
= sin x( cos x)
 
 1  x2    (n  1)sin n  2 x cos x ( cos x)dx
1
=  tan1  +c
2  2 x  =  sinn1x cos x + (n  1)  sin n  2 x cos 2 x dx

1   1  x2  =  sinn1x cos x + (n  1)  sin n  2 x 1  sin 2 x  dx
=   cot 1   + c
2  2 
 2x 
 =  sinn1x cos x + (n  1)   sin n  2 x  sin n x  dx

1  1
 2x  =  sinn1x cos x + (n  1)  sin n  2 x dx
=    tan    + c
2  2  1 x
2
  (n  1)  sin n x dx
1  2x    In =  sinn1 x cos x + (n  1) In2  (n  1) In
= tan1    +c
2  1 x
2
 2 2  In + (n  1)In  (n  1)In 2 =  sinn 1 x cos x
 nIn  (n  1) In 2 =  sinn1x cos x
x2  1
24. Let I =  dx 27. u =  f () sin  + f () cos 
x3 2 x 4  2 x 2  1 du
Dividing Nr and Dr by x5, we get  =  f () sin   f () cos 
d
 1 1  + f () cos   f () sin 
 3 5
x x 
I=   dx =  f () sin   f () sin 
2 1 v = f () cos  + f () sin 
2 2  4
x x dv
 =  f () sin  + f () cos 
2 1  4 4 d
Put 2  2  4  t   3  5  dx  dt
x x x x  + f () cos  + f () sin 
1 dt 1 = f () cos  + f () cos 
 I=   t c 2 2
4 t 2  du   dv  2
   +   = [ f () sin   f () sin ]
1 2 1 
   
d d
= 2 2  4 c
2 x x + [f () cos  + f () cos ]2

8
Chapter 13: Integration
= [f ()]2 sin2 + 2 f () f () sin2  sin x  cos x
+ [f ()]2 sin2  + [f ()]2 cos2 
= 2  1  1 2sin x cos x 
dx

+ 2f () f () cos2  + [f ()]2 cos2  sin x  cos x


= [f ()]2 + 2f () f () + [f ()]2 = 2  1   sin 2 x  2sin x cos x+ cos 2 x 
dx

….[ sin2  + cos2  = 1]


1
= [f () + f ()]2 = 2  (sin x + cos x) dx
1   sin x  cos x 
2
1/ 2
 du  2  dv  2 
   d    d   d =  f ()  f () d 
Put sin x  cos x = t
(cos x + sin x)dx = dt
 
= f () + f() + c 1
 I = 2  dt
x 1 1  t2
28. Let I =  ( x  1) x3  x 2  x
dx = 2 sin 1 (t)  c
= 2 sin1(sin x  cos x) + c
x2  1
=  ( x  1) 2
x3  x 2  x
dx

x2  1
=  (x 2
 2 x  1) x3  x 2  x
dx

1
1
=  x2 dx
 1  1
 x   2  x  1
 x  x
1
Put x +  1 = t2
x
 1 
  1  2  dx = 2t dt
 x 
2t
 I =  dt
(t  1) t 2
2

1
= 2 dt
t 1 2

= 2 tan1 t + c
 1 
= 2 tan1  x   1  + c
 x 

29. Let I =   tan x  cot x dx 


 sin x cos x 
=     dx
 cos x sin x 
sin x+ cos x
=  dx
sin x cos x
2 (sin x  cos x)
=  2sin x cos x
dx

sin x  cos x
= 2  1  1 2sin x cos x
dx

9
Target Publications Pvt. Ltd. Chapter 14: Definite Integrals

14 Definite Integrals 

1 3
log(1  x) 1
1. Let I = 0 1  x 2 dx 3. Let I = 1 2
0
f (x)
dx …. (i)

Put x = tan t  dx = sec2 t dt 3


1
When x = 0, t = 0 and when x = 1, t =
 = 1 2
0
f (3  x )
dx
4

 a a

log(1  tan t)
4
….  f ( x)dx   f (a  x)dx 
 I=   sec 2 t dt  0 
0
1  tan t
2 0

 3
1
4
=  log(1  tan t) dt
= 1 2
0
f ( x)
dx
0
 ….[ f(x) + f(3  x) = 0 (given)]
4
   
=  log 1  tan   t   dt
  4  3
2f ( x )
0 2f ( x )  1 dx
0

 I= …. (ii)
 1  tan t 
4
=  log  1   dt
0  1  tan t  Adding (i) and (ii), we get
 3 3
1 2f ( x )
0 1  2f ( x ) dx + 0 2f ( x )  1 dx
4
 2  2I =
=  log   dt
0  1  tan t 
3 3

1  2f ( x )
4
=  [log 2  log(1  tan t)]dt
= 0 1  2f ( x ) dx = 0 1dx = 3
0
 3
4  I=
2
 I =  (log 2)dt  I
0

 x log x
 2I = log2  t 0
/ 4
 log 2
4
4. Let I =  (1  x
0
2 2
)
dx

 1
x log x x log x

 I= log 2
8 = 0 (1  x 2 )2 dx  1 (1  x 2 )2 dx
5 1 2 3 = I1 + I2 (Say) ….(i)
2.  f ( x ) dx =  f ( x ) dx +  f ( x ) dx +  f ( x ) dx 
x log x
0 0 1
4
2
5
I2 =  (1  x
0
2 2
)
dx
+  f ( x ) dx +  f ( x ) dx
1
3 4 Put x =
2 3 4 5 y
= 0 +  12 dx   22 dx   32 dx   42 dx
1
1 2 3 4  dx =  dy
= 1(2  1) + 4(3  2) + 9(4  3) + 16(5  4) y2
= 1 + 4 + 9 + 16 = 30 When x = 1, y = 1 and when x  , y  0
1
Std. XII : Triumph Maths 

1 1 1
0
y
log  
 y    1  dy
7. Let I =  ( x   )(  x)
dx
 I2 =  2  2 

1  1   y  Put x =  sin2 t +  cos2 t


1  2 
 y   dx = (.2 sin t cos t + .2 cos t ( sin t))dt
0
y log y  1  = 2 (  ) sin t cos t dt
=  dy ….  log     log y  When x = ,  =  sin2 t + (1  sin2 t)
1
(1  y )
2 2
  y 
1  =  + (  ) sin2 t
y log y
=  dy 
0
(1  y 2 ) 2  sint = 1,  t=
1
2
x log x When x = ,
=  dx
0
(1  x 2 ) 2  = (1  cos2 t) +  cos2 t
 I2 =  I1 =  + (  )cos2 t
 From (i), I = I1 + I2 = 0  cos t = 1, t = 0
n
(x  ) (  x) = ( sin2 t +  cos2 t  )
5.  [ x]dx
0
(   sin2 t –  cos2 t)
1 2 3 n = [ cos2t  (1 sin2)]
=  [ x]dx +  [ x]dx +  [ x]dx +… +  [ x]dx [(1 – cos2 t)   sin2 t]
0 1 2 n 1
1 2 3 n = (  ) cos2t (  ) sin2t
=  0dx +  1dx +  2dx +… +  (n  1)dx Since,  > 
0 1 2 n 1
 ( x  )(  x) = (  ) sin t cost
= 0 +  x 1  2  x 2 + …. + (n  1)  x n 1
2 3 n
0
(  )sin t cos t
= (2 – 1) + 2(3 – 2) + …. + (n  1)(n  n + 1)  I = 2 dt
= 1 + 2(1) + …. + (n  1)(1)  (   )sin t cos t
2
= 1 + 2 + …. + (n  1) 0
(n  1)n n(n  1) = 2 (1)dt
= 
2 2 
2
/ 2
sin 2 x  
6. I1 =  sin 2
x
dx 
2
2
0
= 2 1dt
/ 2 / 2
sin 2 2 x (2sin x cos x) 2 0
I2 = 
0
sin 2 x
dx = 
0
sin 2 x
dx
= 2  t 0
/ 2

/ 2

=  4 cos x dx = 4  =  
2

4 = 2   0
/ 2
0
 2 
sin 2 3x
I3 = 
0 sin 2 x
dx =
/ 2
(3sin x  4sin 3 x) 2  ex  1 
= 
0
sin 2 x
dx 8. Let h(x) = x3f(x) = x3  x
 e 1 

/ 2
 e x  1  3 1 e 
x
 (9  24sin x 16sin 4 x)dx
2
=  h(x) = (x)3   x = x
  x 
0  e 1  1 e 
9  3.1  3
=  24. + 16. . =  ex  1 
2 4 4.2 2 2 = x3  x 
 3  e 1 
 I1+I3 =   2  2I 2
2 2  h(x) = h(x)
 I1, I2, I3 are in A.P.  h(x) is an even function.
2
Chapter 14: Definite Integrals
1 1 1 b
  t f (t)dt =  h(t)dt = 2 h(t)dt
3
11. Let I =  f ( x)dx
1 1 0 a
1
Put x = (b  a)t + a
= 2 t 3f (t)dt
0  dx = (b  a)dt
1
When x = a, t = 0 and when x = b, t = 1
= 2 x 3f ( x)dx 1
0
 I =  f  (b  a)t  a  (b  a)dt
 1 3  0
= 2 ….   x f ( x)dx    1
 0  = (b  a)  f  (b  a)t  a  dt
1 0
9. f(m, n) =  (log x) m x n 1dx 1
0 = (b  a)  f  (b  a) x  a  dx
1
1 d  0
= (log x)m  x n 1dx     (log x) m  x n 1dx  dx
0  dx 0   =ba
1
 xn 
1
1 xn 12. If 0  x < 1, then 0  x2 < 1,  [x2] = 0
=  (log x) m     m(log x) m 1   dx
 n 0 0 x n If 1  x < 2 , then 1  x2 < 2,  [x2] = 1
1
m If 2  x  1.5, then 2  x2  2.25,  [x2] = 2
n 0
=00 (log x) m 1  x n 1dx ….[ log 1 = 0]
1.5 1 2 1.5
   x  dx =   x  dx +   x 2  dx +   x  dx
2 2 2
m
=  f(m  1, n) 0 0 1 2
n
1 2 1.5
x
=  0dx +  1dx +  2dx
10. (x) =  (4sin t  3cos t)dt
7
0 1 2

= 0 +  x 1   2 x 
6 2 1.5

  (x) = 4 sin x + 3 cos x 2

 7  4  = 2  1 + 2 (1.5 – 2 )
If x   , ,
 6 3  = 2 – 1 + 3 2 2
then x is in the third quadrant.
=2 2
 sin x and cos x are both negative.
 (x) = 4 sin x + 3cos x < 0 1
13. f   + x2f(x) = 0 ….(given)
 7  4  x
 (x) is decreasing on the interval  , 
6 3 1 1
 7  4   f(x) =  2 f  
 Minimum (least) value of (x) on  , x x

 6 3 sec  sec 
1 1
 4 
4  /3
is    =  (4sin t  3cos t)dt
Let I = 
cos 
f ( x)dx = 
cos 
 f   dx
x2  x 
 3  7  /6
1 1
=  4cos t  3sin t 7  /6
4  /3
Put  t ,   2 dx = dt
x x
 4 7   4 7  When x = cos , t = sec 
=  4  cos  cos   3  sin  sin 
 3 6   3 6  and when x = sec , t = cos 
cos  sec  sec 
 1 3  3 1
= 4      3      I=  f (t)dt    f (t)dt =   f ( x)dx = I
 2 2   2 2 sec  cos  cos 

 I +I=0
=

7 1 3   2I = 0
2  I=0
3
Std. XII : Triumph Maths 

1 n n f ( x)
14. lim 1   16. f ( x)  f ( x)  1
n  n n 1 n2 f ( x)

Integrating on both sides, we get
n n 
  ...   log f ( x)  x  log c  f ( x)  ce x
n3 n  3(n  1) 
 f(0) = c  c = 1
   f(x) = ex
 
= lim 
1 1

1

1
 ... 
1
 Now, f(x) + g(x) = x2
n  n  0 1 2 3(n  1)   g(x) = x2  ex
1 
 1 n 1 1
n 
 n n 1 1
  f ( x) g( x) dx = e ( x 2  e x ) dx
x
1 3(n 1) 1
= lim  0 0
n  n r 1 1
r 0
1
 x e  e
2 x 2x
n = dx
0 0
3
1 1
= dx  e2 x 
1 x =  x 2 e x  2 xe x  2e x  
0
 2 0
3
=  2 1  x  1 2 3
0 =e e 
= 2  1 3  1 0  100 
2 2

= 2(2  1) = 2(1) = 2 17. Let I = 


0
(| sin 3 x |  | cos3 x |) dx

4n 
n 200
15. lim  2

   (| sin 3 x |  | cos3 x |) dx
2
n 
r 1 r 3 r 4 n =
0
4n 
1 1 1
= lim    2

  = 200 (| sin 3 x |  | cos3 x |)dx


2
r 1 n r 3 r 4 n
n 

n 0
n  | sin 3 x |  | cos3 x |is a periodic 
....  
4n
1 1 1
= lim    2  function with period
 
r 1 n r  r
n 
  2 
n 3 n  4 
  2
4  I = 200 (sin 3 x  cos3 x) dx
1
=  dx 0

 
2
0 x 3 x 4  2 
2

 
= 200   sin x dx +  cos x dx 
3 3
Put 3 x + 4 = t
 0 0

1
 3. dx = dt = 200[I1 + I2] (Say) ….(i)
2 x 
1 2 2
 dx = dt Where I1 =  sin 3 x dx
x 3 0
When x = 0, t = 4 and when x = 4, t = 10 
2
10
=   (1  cos 2 x)( sin x) dx
10
1 2 2 1 
 I= 4 t 2  3 dt =  3  t  4 0

Put cos x = t,  sin x dx = dt


2 1 1 2 25 
=     =    When x = 0, t = cos 0 = 1 and when x = ,
3  10 4  3  20  2
2 3  1 
=     t = cos =0
3  20  10 2
4
Chapter 14: Definite Integrals
0
 I2  0
 I1 =   (1  t 2 )dt 
1 2

 sin
3
1 I3 = x dx = 0
=  (1  t 2 )dt 
0 2
1
 t3  1 2 ….[ sin3x is an odd function]
=  t   = 1– =
 3 0 3 3 1
1 x 
  I4 =  log   dx
2
 
2
0  x 
I2 =  cos3 x dx =  cos3   x  dx
 2  1
 11 x 
=  log 
0 0
  dx
2 0  1 x 
2
=  sin 3 x dx = I1 =
3  a a

0 ….   f ( x) dx   f (a  x) dx 
 From (i),  0 0 
 2 2  800 1
 x 
I = 200    = =  log 
3 3 3  dx
0 1 x 

1
sin x  cos x
2
1 x 
18. I1 =  dx =   log   dx
0
1  sin x cos x 0  x 

 I4 =  I4  2I4 = 0
cos x  sin x
2
=  dx  I4 = 0
0
1  sin x cos x
 I1 = I3 = I4 = 0, but I2  0
 2 


2
  
....   f ( x) dx =  f   x  dx  2
x sin 2n x
 0 0  2  

19. Let I = 0 sin 2n x  cos2n x dx

2
sin x  cos x
2 (2  x)sin 2n (2  x)
=  dx =  I1 = 0 sin 2n (2  x)  cos2n (2  x) dx
0
1  sin x cos x
2
 2I1 = 0  I1= 0 sin 2n x
2 = 2  dx  I
sin x  cos 2n x
2n
  cos
6
I2 = x dx 0


0
sin 2n x

= 2  cos 6 x dx
 I=2 0 sin 2n x  cos2n x dx
0
 sin 2n x 
6
….[ cos x is a periodic f with period ] n
 is a periodic f n with period  
 sin x  cos x
2n 2n


2 
= 2  (cos 6 x + cos6 (  x)) dx 2
sin 2n x
= 4  dx
0
0 sin
2n
x  cos 2n x
 2a a

….   f ( x)dx   [f ( x)  f (2a  x)]dx   2a a

 0 0   
 f ( x )d x  2  f ( x)dx, 

.…  0 0 
2  if f (2a  x)  f ( x) 
= 2.2  cos 6 x dx
0 
= 4 
 6  1 6  3 6  5  5 4
= 4. . =
6  6  2  6  4  2 8 = 2
5
Std. XII : Triumph Maths 
 x
4
 bsin x  22. f(x) =  sin 6 tdt
20.  a | sin x |  1  cos x  c  dx = 0 0
x+  x+
4
 f(x + ) =  sin 6 tdt =  sin 6 tdt +  sin
6
i.e., I1 + I2 + I3 = 0 tdt
 0 0 
4 x
I1 = a  | sin x | dx = f() +  sin 6 (u  )du , where t = u + 
 0
4
x
0 
4
 = f() +  sin 6 u du
 
= a   | sin x | dx   | sin x | dx  0

 4 0
 x
= f() +  sin 6 tdt = f() + f(x)
0 
4
 0
 
= a   ( sin x) dx   sin x dx   f( + x) = f() + f(x)
 4 0

23. Let f(x) = ax2 + bx + c
= a  cos x  /4   cos x 0 
0 / 4
   f (x) = 2ax + b

= a 1 

1
2

1
2

 1 = a 2  2

  f (x) = 2a
f(0) = c = 3

4
f (0) = b = –7
bsin x
I2 =  1  cos x dx

f (0) = 2a = 8
4  a=4
=  b log |1  cos x | / 4
 /4  f(x) = 4x2 – 7x + 3
2 2
    
 f ( x)dx =  (4 x  7 x  3)dx
2
=0 …. cos    cos 
  4  4 1 1

 2
 4 x3 7 x 2 
    c
4
=    3x 
I3 = c  1dx = c      3 2 1
 4 4 2
4 32 4 7 
=  14  6     3 
 I1 + I2 + I3 = 0 becomes 3 3 2 
c

a 2 2 + = 0
2
 ….[ I2 = 0]
=
32  42  18  8  21  18 
 
 The given equation is a relation between a and c. 3  6 
8 5 16  5 11

log   =  = 
   2xe
2
2 x2
3 6 6 6
21. Let I = 0
cos e x dx
1
2A
x2
Put e = t 2 xe dx = dt x2 24.  f ( x ) dx 
0

When x = 0, t = e0 = 1
1
    x   2A
When x = log , t = elog  /2 
2 2
  A sin  2   B dx 
0


1
2  2A  x   2A
 I =  cos tdt = sin t 1
 /2
  cos    Bx  
1
   2  0 
 2A 2A
= sin  sin 1 = 1 – sin1  B B=0
2  
6
Chapter 14: Definite Integrals

 x   from the given condition,


Now, f(x) = A sin    B
 2  2a 2 a 2
+ a  20 
 x   3 3
 f (x) = A cos   .
 2  2 3a 2
  a  20  0
3
 1  A 1
 f   = .  a2 + a  20  0
2 2 2
 (a + 5) (a  4)  0
A 4
 2 A=  5  a  4
2 2 
The positive integer values of a satisfying the
sin x  sin 2 x  sin 3 x sin 2 x sin 3x above inequality are 1, 2, 3, 4.
25. f(x) = 3  4sin x 3 4sin x  There are 4 such values.
1  sin x sin x 1 27. Since, 1  sin x  1  2  2sin x  2
sin x sin 2 x sin 3x 3
2
5
6 

= 0 3 4sin x (C1  C1  C2  C3)  [2sin x]dx   [2sin x]dx   [2sin x]dx


  5
0 sin x 1 2 2 6

7 3
= sinx (3  4 sin2x) 6 2
  [2sin x]dx   [2sin x]dx
= 3sinx  4 sin3x  7
= sin 3x 6

5 7 3
 
6  6 2
2 2
  f ( x)dx =  sin 3x dx
=  (1)dx   (0)dx   (1)dx   (2)dx
 5  7
0 0 2 6 6

1  5   7   3 7 
cos3x 0
 /2
=  =     0      2  
3  6 2  6   2 6 
1 3  2  4 
=   cos  cos 0  =   
3 2  6 6 6 2

1 28. Applying R 1  R 1  sec x R 3 , we get


=   0  1
3
0 0 sec2 x  cot x cosec x  cos x
1 f ( x)  cos x cos x
2 2
cosec2 x
= 2
3 1 cos x cos2 x

 = (sec2 x + cot x cosec x  cos x) (cos4 x  cos2 x)


2
  cos3t 3   = (sec2 x + cot x cosec x  cos x) ( cos2x sin2 x)
 a  cos t   a sin t  20cos t  dt
2
26. 
0  4 4   =  sin2 x  cos3 x + cos3 x sin2 x
/ 2 =  sin2 x  cos3 x (1  sin2 x)
 1 3  
=  a 2  sin 3t  sin t   a cos t  20sin t  =  sin 2 x  cos5 x
  12 4  0
 

12 3  2 2
= a  (1)  (1)  0   a(0  1)  20(1  0)   f ( x)dx    (sin x  cos5 x) dx
2

 12 4  0 0

3 1   1  4.2 
= a2    + a  20     
 4 12   2 2 5.3.1 
2a 2  8
= + a  20 = 
3 4 15
7
Std. XII : Triumph Maths 
a
1 3 1 
29. 
a 2 1
x 1  dx < 4
x
a
 
1  3 x 3/ 2 
  . 3 +x  2 x  4
a 2 
 2 1
1 
 a a  1  a  1  2 a  2   4
a
 a+ a2<4
 a+ a 6<0
  a 3  a 2 <0
 3 < a < 2
But a cannot be negative and according to
the problem, a  0
 0< a <2
 0<a<4
4 3 4 3
3esin x 3x 2 esin x
30. Let I = 1 x dx = 1 x3 dx
Put x 3  t  3 x 2 dx  dt
64
esin t
 I = 1 t dt
64
esin x
= 1 x dx
 d esin x 
= [f ( x)]164 
….  dx [f ( x )]  
 x 
= f(64)  f(1)
 k = 64

8
Chapter 15: Applications of Definite Integral

15 Applications of Definite Integral

3. Y
1. Y
x=– x=
y=x+1 y = 5  x2
(1, 2)
X X (2, 1)
O

Y X X
(1, 0) O (1, 0) (2, 0)

Required area =  | sin x | dx

0  Y
=  | sin x | dx   | sin x | dx 2 1

0
0

Required area = 
1
5  x 2 dx –  (1  x) dx
1
=    sin x  dx   sin x dx 2
 0
  ( x  1) dx
=  cos x    cos x 0
0 
1
2 1
= cos0  cos()  (cos  cos0) x 5 x   x2 
=  5  x 2  sin 1    x  
= 1  (1)  ( 1  1) 2 2 5  1  2  1
= 1 + 1  (2) = 4 sq. units 2
 x2 
2. Y Y    x
2 1

y=
2
y = sin1x
5 1  2   1 5  1 
O =1+ sin       2  sin 1   
X X 2  5  2 2  5 
  1  1   1 
y=
2  1    1      2  2   1
x=0  2  2   2 
Y 5  2  5  1  1
1
= 1 + sin1   + 1 + sin1   2 –
y = sin x 2  5 2  5 2
 x = sin y 5  1  2   1  1
 = sin    sin 1   
2 2  5  5  2
Required area = 2 x dy
0 5  2   2  1
= sin 1    cos 1   
 2  5  5  2
2
= 2 sin y dy
….  sin 1 x  cos 1 1  x 2 
0  
= 2  cos y 0
/ 2
5  1  5 1 
=       sq.unit
= 2(0  1) = 2 sq.units 2 2 2  4 2
1
Std. XII : Triumph Maths 
4. Y  x2 
5/ 2

=     2 x 2
5/2

 2 2
5/ 2
B(0,1)  x  3  1 1  x  3  
y=x–1 y=x–1 +   1  ( x  3)  sin 
2

 2  2  1  2
X X  1
(–1, 0) O A(1,0) 
1  25  5   2 1
=   4   2  2  +   1
y=x+1 y = – x +1 2 4  2   2  4
(0, –1)
 
1  1  1 1 
Y + sin–1      0  sin (1) 
2  2  2 
Required area = 4 (area of  OAB)
9 1 3 1  1 
= 1        
1 8 4 2 2 6  2 2 
= 4  y dx
1 3  
0
=   
8 8 4 12
1
= 4   x  1dx  3 1
=    sq.unit
0
6 8 
1
  x2 
=4   x  = 2 sq. units 6. The point of intersection of the curve y = 2x  x2
 2 0 and the line y = x are (0, 0) and (3, 3).

5. The given equation can be written as Y


x=3
x2  6x + 9 + y2 – 4y + 4 = 9 + 4 – 12
 (x  3)2 + (y  2)2 = 1
(2, 0)
This is a circle with centre at (3, 2) and radius X X
O (3, 0)
1.

Y
x = 5/2 y = x
x=2 (3, –3)
(x3)2 + (y2)2=1 y = 2x – x 2

Y
(2, 2)  Required area
(3, 2)
3
=  [(2 x  x 2 )  ( x)]dx
0

X O X 3
=  (3 x  x 2 ) dx
Y 0

3
 Required area  3x 2 x3 
=   
5 5  2 3 0
2 2
=  x dx   2  1  ( x  3) 2 dx 
 =
9
sq. unit
2 2 2
2
Chapter 15: Applications of Definite Integral
7. Y 1 1  1 1  1 1 
=  (0 + 1)       
2 2  2 2  2 2 

(0, 1)  1 1 
+ (1) + 0     
 2 2
y = cos x
= 2 1+ 2 + 2 –1 + 2
X X
   O  
  ,0
 2 
 ,0
2  
= 4 2  2 sq.unit 
x = 1 x=1
9.
Y Y
2
|x| = 1  x = 1 or x = 1 y=x +2
1
Required Area =  cos x dx
1
y=x

1
= 2 cos x dx (0, 2)
0

….[ cos x is an even fn] X X


O
= 2 sin x 0 = 2(sin 1  0)
1
x=3
= 2 sin 1 Y
3
8. Y
Required area =  ( x 2  2  x)dx
0
y = cos x
y = sin x
5 3  x3 x2 
3

4 2 =   2x  
X
O 
X 3 2 0

4 9
=9+6 0
2
Y 21
= sq. unit
2
Required area
3 10. Y
2
2
x=2–y–y
=  | cos x  sin x | dx
0
1
 5
4 4
X X
=  (cos x  sin x)dx +  (sin x  cos x)dx O
0 
4

3
2
+  (cos x  sin x)dx –2
5
4
Y
= sin x  cos x 0   cos x  sin x  / 4
/ 4 5  /4

Putting x = 0 in the given equation, we get


+ sin x  cos x 5  /4
3 / 2
y = 1 or y = 2
3
Std. XII : Triumph Maths 
1 1 Required area
  x dy =  (2  y  y )dy
2
Required Area = 0 1
2 2 = 2  x  1 dx + 2   x  1 dx
1 1 0
 y 2 y3 
= 2 y    1
2    x  1 
3/ 2
2 3  2 2 3/ 2 0
 = 2.  x  1  + 2.  
3  1 3  1 
1 1  8 0
=2    4  2   4 4 8
2 3  3 =  = sq. units
3 3 3
1 1 8
=2  +6– 13.
2 3 3 x = 1
Y
1 9
= 8 – 3 – = sq.units
2 2 y = x2 + x + 1
D(1, 3)
11. Y x=1 C
y2 = 4a2(x – 1) B
y = 4a
(0, 4a)
X X
A y=0 O

Y
O X
(1, 0) (5, 0) dy
y = x2 + x + 1  = 2x + 1
dx
 dy 
   = 2(1) + 1 = 2 + 1 = 3
 dx (1,3)
Y
4a
 y2   The equation of the tangent at the point (1, 3)
Required area = 0  4a 2  1  1 dy is y  3 = 3(x  1) i.e., y = 3x.
 It passes through origin.
4a
4a
y 2
1 y  3
 Required area
= 2
dy =   = area of the region OABCO + area of the
0
4a 4a 2  3  0
region OCDO
1 1 0 1
=   (64a3 – 0)
2
4a 3 =  y dx   ( y
1 0
1  y 2 ) dx
16a 0 1
= sq. units
 ( x  x  1) dx   ( x  x  1  3x)dx
2 2
3 =
1 0

12. Y 0 1

 (x  x  1) dx   ( x 2  2 x  1) dx
2
=
1 0
y2 =  x + 1 (0, 1) y2 = x + 1 0 1
x x  3
 x3 2

=    x     x2  x 
3 2  1  3 0
 1 1  1
= 0      1   1  1  0
X X  3 2  3
(–1, 0) O (1, 0)
4 1 1
=  
3 2 3
83 2
=
(0, –1) 6
7
= sq. unit
Y 6
4
Chapter 15: Applications of Definite Integral
14. Y  3 1  3  8 3 3 
2
4y = 3x =2  sin 1    0      0 
 2 4  2   3  3  8 
 3  3  8 3 3 2 2 3 3
x2 + 4y2 = 4 A 1,  = 2    =  
 2   4 3 9 8 3 4 3
X O X 2 2 3
= 
3 12
B  2 1 
=   sq. unit
 3  3 2 3
1,  
 2  Y
15.
y = x2 + x
Y
The equation x2 + 4y2 = 4 is of ellipse with
centre at origin and the equation 4y2 = 3x is of
a parabola with vertex at origin. x=1
Solving the equations, we get x2 + 3x  4 = 0
 (x + 4)(x  1) = 0 X X
O 1
But x =  4 is not possible, since both points
of intersection lie on the right hand side of
Y-axis.
3 Y
 x = 1 and y = ±
2 dy
Slope of tangent = = 2x + 1
 3 dx
 The points of intersection are A  1,  and  y =  (2 x  1)dx = x2 + x + c
 2 
The curve passes through the point (1, 2).
 3
B  1,  .  2 = 12 + 1 + c
 2   c=0
 Required area  The equation of the curve is y = x2 + x, which
3 is a parabola as shown in the figure.
2 1
1
 x3 x 2 
=   x2  x1  dy  Required area =  ( x  x)dx =   
2

 3 0 3 2 0
2
1 1
3 =  0
2
 4 y2  3 2
  
2
= 4 4 y  dy 5
 3
3  = sq. unit
2 6
3
16. Draw AP  to X-axis.
 2
4 y2 
= 2   4  4 y2   dy 1 a3
3  A1 = A(OAP) =  a  a2 =
0  2 2
….[ the function is even] A2 = Area bounded the curve OA and the lines
3 3
OP and AP
a
2
8 2 a a
 x3  a3
= 4 1  y dy   y 2 dy
2
=  y dx =  x dx =   
2

0
30 0 0  3 0 3
3 3  Required area = A1  A2
 2 8y  2
3
y 1 a3 a3 a3
= 4  1  y 2  sin 1 ( y )     =   sq. unit
2 2 0 3  3 0 2 3 6
5
Std. XII : Triumph Maths 
17. Y
3

y = sin1x
 required area = x
0
1  x2  dy
3
=  ( y  2) 2  1  (2 y  4)  dy
0
   1  3
 0,  C B , 
 y  6 y  9  dy
2
 4 =
 2 4
0
X O X  y3 
3
 1  =   3y2  9 y
A ,0 
 2  3 0
= 9 – 27 + 27 – 0
Y = 9 sq. units
Required area 
= area of the rectangle OABC  1  sin x4
1  sin x 
 area of the region OBCO 19. Required area =     dx
0
cos x cos x 

 1 4   1  sin x 1  sin x 
   cos y 0
/ 4
=    sin y dy = ….    0
4 2 0 4 2  cos x cos x 
   1    2 2 
=   1  sq. units 
4
  cos x  sin x  
 cos
x
 sin
x
 
 4 2  2  =    
2 2
 
2 2
x x x x  dx
0 cos 2  sin 2 cos 2  sin 2 
18. Y  2 2 2 2 
 
(y –2)2 = x – 1 
 x x x x 
(2, 3)  cos  sin
4 cos  sin 
=  2 2  2 2  dx
 x x x x 
 cos 2  sin 2 cos  sin
0
2 2 
 
x –2y + 4 = 0

 x x
 1  tan
4 1  tan 
X X =  2  2  dx
Q O R
 x x
(–4, 0) (5, 0) 0
 1  tan 2 1  tan 
 2
Y  x x  x
4 1  tan  1  tan 4 2 tan
The equation of the parabola is =  2 2 dx =  2 dx
(y  2)2 = x  1 2 x 2 x
0
1  tan 0
1  tan
Diff. w.r.t. x, we get 2 2
dy x 1 x
2(y  2) =1 Put tan = t  sec2 dx = dt
dx 2 2 2

dy 1 tan
 = 8
4t
dx 2( y  2)  required area =  dt
 dy  1 1
0 1  t  2
1  t2
     2 1
 dx (2,3) 2(3  2) 2 4t
=  (1  t 2 ) 1  t 2
dt
1 0
 Equation of tangent is y  3 = (x  2)
2   
….  tan  2  1
 2y  6 = x  2  8 
 x  2y + 4 = 0
It cuts the X-axis at the point Q (4, 0) and the
parabola cuts the X-axis at the point R(5, 0).
6
Chapter 16: Differential Equations

16 Differential Equations 

1. The given equation is Both of these equations reduce to


1  x  1  y  a (x  y )
4 4 2 2
1 1
dx  dy  0
2 2
Put x = sin , y = sin  x y
The equation becomes Integrating both sides, we get
cos  + cos  = a (sin   sin ) log x + log y = log c
    
2 cos   cos    log (xy) = log c
 2   2 
 xy = c, which is the equation of rectangular
    
= 2a sin   cos   hyperbola.
 2   2 


  
cot 
 2 
=a
4. 
1  x2  1  y 2  A x 1  y 2  y 1  x2 
    = 2 cot1 a Put x = tan , y = tan 
 sin1 x2  sin1 y2 = 2 cot1 a The equation becomes
Differentiating w.r.t. x, we get sec  + sec  = A (tan  sec   tan  sec )
1 1 dy
 2x   2y  0 1 1  sin  1 sin  1 
1 x 4
1 y 4 dx    A    
cos  cos   cos  cos  cos  cos 
dy x 1  y 4
  cos   cos   sin   sin  
dx y 1  x 4   A 
cos  cos   cos  cos  
 Degree and order are both 1.
 cos  + cos  = A (sin   sin )
2. Since, the given differential equation cannot
be expressed as a polynomial in differential    
 2 cos   cos  
coefficients, so its degree is not defined.  2   2 

3. The equation of tangent at any point P(x, y) is    


= A.2 sin   cos  
dy  2   2 
Yy= (X – x)
dx   
 cot  =A
 dx   2 
This meets the X-axis at A  x  y ,0  .
 dy      = 2 cot1 A
Similarly, it meets the Y-axis at
 tan1 x  tan1 y = 2 cot1 A
 dy 
B  0, y  x  . Differentiating w.r.t. x, we get
 dx 
According to the given condition, 1 1 dy
  0
P is the mid-point of AB. 1  x 1  y 2 dx
2

dx dy dy 1  y 2
 2x = x  y and 2y = y  x  
dy dx dx 1  x 2
dx dy  Degree and order of the differential equation
 x+y = 0 and y + x = 0
dy dx are both 1.
1
Std. XII : Triumph Maths 

 y 2 1
f   y.e  x =  6
dy y x 1
   
x
5.
dx x  y 1  6 x  6 6x  5
f   = =
x x 1 x 1
Put y = vx  6 x  5  x2
 y = f(x) =  e
dy dv  x 1 
 =v+x
dx dx dy x 2  y 2  1
 The given equation becomes, 8. 
dx 2 xy
dv f (v)
v+x =v+  2xydy = (x2 + 1) dx + y2 dx
dx f (v)
 2xydy  y2dx = (x2 + 1) dx
1 f (v) Dividing by x2, we get
 dx = dv
x f (v) 2 xydy  y 2dx  x 2  1 
=  2  dx
Integrating on both sides, we get x2  x 
log x = log f(v) + log K
 y2   1 
 x = f(v)K  d   =  1  2  dx
 y  x   x 
 x = Kf   Integrating both sides, we get
x
y2 1
 y 1 1 = x c
 f   =  x = cx, where c = x x
x K K
 2 2
y = x  1 + cx
dy When x = 1, y = 0,  c = 0
6. The given equation is  f ( x) y = f ( x)f ( x)  the required solution is y2 = x2  1
dx
i.e., x2  y2 = 1, which is the equation of a
I.F. = e 
f  ( x ) dx
  ef ( x ) hyperbola.
 the required solution is x dy  y dx
9. x dx + y dy + 0
y.ef (x) =  ef ( x ) .f ( x)f ( x)dx x2  y2
=  e t .t dt , where f(x) = t 1 1  xdy  ydx 
 (2xdx + 2ydy) + = 0
2 y 2  x2 
= t.e t   e t .dt 1 2
x
= tet  et + c 1  y
 d ( x 2  y 2 )  d  tan 1  = 0
 y.ef (x) = f(x) ef (x)  ef (x) + c 2  x
 y = f(x)  1 + cef (x) Integrating both sides, we get
7. The given equation is 1 2  y c
( x  y 2 )  tan 1   
2 2 x 2
ex
(x + 1) f (x)  2(x2 + x) f(x) =  y
x 1  x2 + y2 + 2 tan1   = c
If y = f(x), the equation is x
2  y
dy ex  2 tan1   = c  x2  y2
 2 xy = , which is a linear equation x
dx ( x  1) 2
 y cx  y
2 2

 I.F. = e 
 2 x dx
 e x
2  tan1   =
x 2
 the required solution is
y  c  x2  y 2 
2 1 1  = tan  
y.e  x =  dx + c =  c x  2 
( x  1) 2
x 1
When x = 0, y = 5
 c  x2  y 2 
 y = x tan  
 c=6  2 
2
Chapter 16: Differential Equations
dy 1 dy 1
10. 2x2y = tan (x2y2)  2xy2    tan x =  sec x
dx y 2 dx y
dy 1 1 dy dt
 x2.2y + y2.2x = tan (x2y2) Put = t,   2  
dx y y dx dx
d 2 2
 (x y ) = tan (x2y2)  The equation becomes,
dx
dt
dz  (tan x) t = sec x, which is linear equation.
 = tan z, where z = x2y2 dx
dx
I.F. = e 
tan x dx
 dx = cot zdz 
Integrating both sides, we get = e log (sec x ) = sec x
x = log (sin z) + c  x = log(sin x2y2) + c  the required solution is
  t sec x =  sec2 x dx  c
When x = 1, y = , z=
2 2
1
 1 = log 1 + c,  c = 1  sec x = tan x + c
y
 the required solution is
x = log (sin x2y2) + 1  sec x = y (c + tan x)
 log (sin x2y2) = x  1 dy
 sin (x2y2) = ex 1 13. (xy  x2) = y2
dx
dy dx
11. x3 + 4x2 tan y = ex sec y  y2 = xy  x2
dx dy
Dividing by x3 sec y, we get Dividing by x2y2, we get
1 dy 4 tan y ex 1 dx 1 1 1
  = 3 =  
sec y dx x sec y x x 2 dy x y y 2
dy 1 ex 1 dx 1 1 1
 cos y + (4 sin y). = 3     
dx x x x 2 dy x y y 2
dy dt
Put sin y = t,  cos y = 1
dx dx Put t
x
 the equation becomes,
1 dx dt
dt  4  ex   2 =
   t  3 , which is a linear equation x dy d y
dx  x  x
4
 The equation becomes
 x dx log x 4 dt 1 1
 I.F. = e e e
4 log x
x 4
  t  2 , which is a linear equation
 the required solution is dy y y
tx4 =  e x . x dx  dy
1

 I.F. = e y = elog y = y
 tx4 = xex  ex + c  the required solution is
 sin y.x4 = xex  ex + c
1
When x = 1, y = 0 ty =  dy + c
y
 c=0
 sin y.x4 = xex  ex  ty = log y + c
 sin y = (x  1) ex.x4 y
 = log y + c
x
dy
12. We have, = y tan x  y2 sec x  y = x (log y + c)
dx
The curve passes through the point (1, 1).
1 dy 1
  = tan x  sec x  1 = 1(0 + c),  c = 1
y 2 dx y  the required solution is y = x (log y  1).
3
Std. XII : Triumph Maths 
dy  the equation becomes,
14. = exy (1  ey)
dx dv vx v
v+x = =
dy dx x  vx 1  v
 ey = ex (1  ey) dv v
dx  x = v
dx 1 v
dy
 ey = ex  ex.ey v  v  v2
dx =
1 v
dy
 ey + e x e y = ex 1 v 1
dx  2
dv = dx
v x
dy dt Integrating both sides, we get
Put e y = t,  e y 
dx dx  2 1  1
 The given equation becomes   v  v  dv   x dx + c
dt 1
 e x .t  e x , which is a linear equation.    log v = log x + c
dx v
x dx x  y
I.F. = e 
x

e
 ee    log   = log x + c
y x
 the required solution is
x
x x    log y + log x = log x + c
t.ee =  ee .e x dx y
x
=  e z .dz , where ex = z    log y = c
y
= ez + c This curve passes through (1, 1).
 t.ee
x x
= ee  c  c = 1
x

x
e y .e e  e e  c
x    log y = 1
y
x
15. The equation of the tangent to the curve  + log y = 1
y = f(x) at P (x, y) is y

dy x
Yy= (X  x)  log y = 1 
dx y
x x
1 
 dx   y= e y
= e.e y
This meets the X-axis at  x  y ,0  .
 dy  x

 yey = e
According to the given condition,
y dy 1 y 2
x =y 16. =
dy dx y
dx
y
 xy=
y   1 y 2
dy = 1dx
dy
dx   1  y2 = x + c
dy y  (x + c)2 = 1  y2
 = , which is a homogeneous d.E.
dx x  y  (x + c)2 + y2 = 1
Put y = vx  Radius is fixed, which is 1 and the centre is
dy dv (c, 0) which is a variable centre on the
 =v+x
dx dx X-axis.
4
Chapter 16: Differential Equations

tx  ty  x y   the required solution is


17. (A) f(tx, ty) = = t1  2 2  tan y
t x t y x y 
2 2 2 2
x cot y =  cot y dy  c
sin 2 y
= t1 f(x, y)
 Homogeneous of degree 1. 1 sin y 1
=   
tan y cos y 2sin y cos y
dy  c
1

2
 tx 
(B) f(tx, ty) = (tx) 3 (ty ) 3 tan 1   1
 ty  = 2 tan y
sec2 y dy + c

1
 x   13
1

2
= (t) x y tan    t f ( x, y )
3 3 3 1
 x cot y = tan y  c
 y
 
1 The curve passes through  1,  .
 Homogeneous of degree  .  4
3
 1 = 1 + c,  c = 0
 the equation of the curve is
(C) f(tx, ty) = tx log t x  t y  log t y 
2 2 2 2
  x = tan y
tx

+ ty e ty 19. The equation of hyperbola is xy = 2


2
  y=
t 2 x2  t 2 y 2 
x

= t  x log   ty e y x
 ty  dy 2
 m1 = =  2 (slope of tangent to the
  dx x
 
x

= t  x log x 2  y 2  log y  y e y  hyperbola)


  dy
m2 = = slope of tangent to the required
= t f(x, y) dx
 Homogeneous of degree 1. family of curves.
The curves are intersecting orthogonally,
(D) f(tx, ty) m1m2 = 1
  2t 2 x 2  t 2 y 2   dy  2 
= tx log    log (tx  ty )       = 1
  tx   dx  x 2 
 tx  2ty  dy x2
+ t 2 y 2 tan    =
 3tx  ty  dx 2
x3
 2 x2 + y 2  2 2  x  2y  Integrating both sides, we get y = + c,
= tx log   t y tan   6
 x( x  y )   3x  y  which is the equation of required family of
 Non-Homogeneous. curves.

dy sin 2 y 20. The given equation is


18.  dy ( y  y3 ) ( y  y 3 )
dx x  tan y  
dx 1  x  xy 2 1  x(1  y 2 )
dx x  tan y
  dx 1  x(1  y 2 )
dy sin 2 y  
dy y (1  y 2 )
dx x tan y
  = , 1 x
dy sin 2 y sin 2 y =  2

y (1+ y ) y
which is a linear equation
1 dx 1 1
1     x=  , which is a linear
I.F. = e 
 cosec 2 y dy  log(tan y )
 e 2
e log (tan y ) 2
dy y y (1  y 2 )
= elog cot y equation
1
= cot y  y dy
 I.F. = e = elog y = y
5
Std. XII : Triumph Maths 
 the required solution is Integrating both sides, we get
2
1 x
xy =   dy + c  
1  y2 y
   = (1  log x)  x 2dx
 xy = tan1 y + c 2
 d  c
The curve passes through (0, 1)  c =    (1  log x)  x 2 dx  dx 
4  dx  2
 the required equation of the curve is x2 x3 1 x3 c

 
2y 2
= (1 + log x) .
3
   dx 
x 3 2
xy + tan1 y =
4 x2 x3 x3 c
  = (1 + log x).  
dy 2 y2 3 9 2
21. Slope of tangent =
dx x2 2 x3 2 x3
  = (1  log x )  c
1 y2 3 9
 slope of normal = 
dy 2 x3  1
dx
= 1  log x    c
3  3
The equation of the normal is x 2 2 x3  2 
  =   log x   c
1 y 2
3 3 
Yy=  (X – x)
dy
dx 23. The equation of the tangent at P(x, y) is
dy dy
 (Y – y) + (X – x) = 0 Yy= (X  x)
dx dx
This meets the Y-axis at  0, y  x  .
dy
The normal passes through the point (3, 0).
 dx 
dy
 (0  y) + (3  x) = 0 According to the given condition,
dx dy
dy y  x = x3
 y =3x dx
dx dy  1 
     y = x2
 ydy = (3  x) dx dx  x 
y2 x2 1
  x dx 1
Integrating both sides, we get = 3x  + c  I.F. = e = elog x =
2 2 x
7  solution of the given equation is
The curve passes through (3 , 4),  c =
2 1 1
y  =   x2   c
y2 x2 7 x x
 the equation of the curve is  3x   2
2 2 2 y x x3
 =   c  y =   cx
 x2 + y2  6x  7 = 0 x 2 2
x3
22. The given equation can be written as  f(x) =   cx ....(i)
2
xdy  ydx = xy3 (1 + log x) dx 1
 f(1) =   c
 ydx  xdy  2
   = xy (1 + log x) dx
 y2  1 3
 1 =  c c =
x 2 2
 d   = xy (1 + log x) dx x 3
3
 y  f(x) =   x ....[From (i)]
2 2
x x 27 9
  d   = x2 (1 + log x) dx  f(3) =  =9
y  y 2 2
6
Chapter 16: Differential Equations
dV
24. = k(T  t)
dt
 dV = k(T  t)dt
Integrating on both sides, we get
 dV = k  (T  t) dt  c
k(T  t) 2
 V(t) = c ....(i)
2
Initially i.e., when t = 0, V(t) = I
kT 2 kT 2
 I= c c = I 
2 2
k(T  t) 2
kT 2
 V(t) = I  ....[From (i)]
2 2
When t = T,
kT 2
V(T) = I 
2
dy y y
25. =  cos2 ….(i)
dx x x
Put y = vx ….(ii)
dy dv
 =v+x ….(iii)
dx dx
Substituting (ii) and (iii) in (i), we get
dv dv
v+x = v  cos2v  x =  cos2 v
dx dx
Integrating on both sides, we get
dx
 sec v dv =   x  c
2

 tan v =  log x + c
y
 tan =  log x + c ….(iv)
x
 
Since, the required curve passes through 1,  .
 4

 tan =  log 1 + c  c = 1
4
y
 tan =  log x + 1 ….[From (iv)]
x
y
 tan =  log x + log e
x
  e 
 y = x tan1 log   
  x 

7
Target Publications Pvt. Ltd. Chapter 17: Probability Distribution

17 Probability Distribution 

1. Given, 1  3p 1 p
P(X= 3) = 2P(X= 1) and P(X= 2) = 0.3 ….(i) i.e., 0   1, 0   1,
4 4
Now, mean = 1.3
1  2p 1  4p
 0  P(X = 0) + 1  P(X = 1) + 2  P(X = 2) 0  1 and 0  1
4 4
+ 3  P(X = 3) = 1.3
1 1
 7P(X = 1) = 0.7 ….[From (i)]   p 
3 4
 P(X = 1) = 0.1
Also, P(X = 0) + P(X = 1) + P(X = 2) 1  3p 1 p 1  2p
Mean(X) = 1  +0 +1 
+ P(X = 3) = 1 4 4 4
 P(X = 0) + 3P(X = 1) = 0.7 1  4p
+2
….[From (i)] 4
 P(X = 0) + 0.3 = 0.7 2  9p
=
 P(X = 0) = 0.4 4
8
1 1
2.  P(X  x) 1
x 0
Now,   p 
3 4
 a + 3a + 5a + 7a + 9a + 11a + 13a 9
 3 ≥ 9p  
+ 15a + 17a = 1 4
 81a = 1 1
   2  9p  5
1 4
a=
81
1 2  9p 5
   
3. P(E) = P(X = 2 or X = 3 or X = 5 or X = 7) 16 4 4
= P(X = 2) +P(X = 3) +P(X = 5)+P(X= 7)
2
= 0.23 + 0.12 + 0.20 + 0.07 = 0.62 x  x2 
2
5. P(X > 1.5) =  dx =   = 0.4375
P(F) = P(X < 4) 1.5
2  4 1.5
= P(X = 1) + P(X = 2) + P(X = 3)
2
= 0.15 + 0.23 + 0.12 = 0.50 x  x2 
2
and P(X > 1) =  dx =   = 0.75
P(E  F) = P(X is a prime number less than 4) 1
2  4 1
= P(X = 2) + P(X = 3)
 X  1.5  P(X  1.5) 0.4375 7
= 0.23 + 0.12 = 0.35  P   
 X  1  P(X  1) 0.75 12
 P(E  F) = P(E) + P(F)  P(E  F)
= 0.62 + 0.50  0.35 = 0.77 6. P(X = xi) = ki, where 1  i  10

4. Here,
1  3p 1  p 1  2p
, , and
1  4p
are
  P(X  x ) 1 i

4 4 4 4
probabilities when X takes values 1, 0, 1 and  (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)k = 1
2 respectively. Therefore, each is greater than 1
k=
or equal to 0 and less than or equal to 1. 55
1
Std. XII : Triumph Maths 

7. We have,  P(X  x) 1
x 0

 x
1
 k  ( x+ 1)   1
x 0 5
 1 1
2
1
3

 k 1  2    3    4    .... = 1
 5 5 5 
 1 
 1 
 1 5 =1
k 
 1  1 2 
1  5  1   
  5 
 a  (a  d) r  (a  2d) r 2  ....
….  a dr


 
 1  r (1  r) 2 
5 5 
 k   = 1
 4 16 
25k
 =1
16
16
k=
25

2
Target Publications Pvt. Ltd. Chapter 18: Binomial Distribution

18 Binomial Distribution

10 1 3 1
1. We have, p = = 4. Here p = =
100 10 6 2
1 9 1 1
 q=1– = and q = 1  p = 1  =
10 10 2 2
According to the given condition, n = 100
50
P(X  1)  1 1
100  variance = npq = 100   = 25
2 2
1
 1 – P(X = 0) 
2 5. Here n = 8,
1 2 1
 P(X = 0)  p = Probability of getting 1 or 3 = =
2 6 3
n
9 1 1 2
   ,  q=1 =
 10  2 3 3
which is possible if n is at least 7.
1 2 16 4
 n=7  S.D. = npq = 8  = =
3 3 9 3
2. P(X = 1) = 8 . P(X = 3), if n = 5
 5 C1q 4 p1 = 8. 5 C3q 2 p3 6. Let X denote the number of failures in 5 trials.
Then, P(X = r) = 5Cr (1  p)r p5r ; r = 0,1,2,...., 5
5q 2 q2
 2 = 8(10)  2 = 16 31
p p  P(X  1) 
32
 q = 4p
 1  p = 4p 31
 1  P(X = 0) 
 5p = 1 32
1 31
 p=  1  p5 
5 32
1
16   p5
3. P(X = 0) = 32
81
16 1  1
 4C0 p0 q4 = p p 0, 2 
81 2  
4
2
 q4 =   7. Required probability
3 3 3 3 3
1 1 1 1
2 = C0    3C0   + 3C1    3C1  
3
q= 2 2 2 2
3
3 3 3 3
1 1 1 1 1
p= + 3C2    3C2   + 3C3    3C3  
3 2 2 2 2
4
1 1 1 1 5
 P(X = 4) = 4C4p4q0 = p4 =   = = (1 + 9 + 9 + 1)   =
3 81 8 8 16
1
Std. XII : Triumph Maths 
9 Since, P(X= 4), P(X= 5) and P(X= 6) are in A.P.
8. P(at least one success) 
10  2P(X = 5) = P(X = 4) + P(X = 6)
n n n
9 1 1 1
 P(X  1 )   2 nC5   = nC4   + nC6  
10 2 2 2
9  2 nC5 = nC4 + nC6
 1  P(X = 0) 
10 n! n! n!
2 = +
1 5!(n  5)! 4!(n  4)! 6!(n  6)!
 P(X = 0) 
10 2 1 1
0 n  = +
1 3 1 5(n  5) (n  4) (n  5) 6  5
 nC0     
 4   4  10  n2  21n + 98 = 0
3
n
1  (n  7) (n  14) = 0
    n = 7 or 14
 4  10
n 11. Let the probability of success and failure be p
4
    10 and q respectively.
3  p = 2q
4 Since, p + q = 1
 nlog10    log10 10
3 1
 3q = 1  q =
n(log10 4 – log10 3)  1 3
1 1 2
n  p=1 =
log10 4  log10 3 3 3
 required probability
9. According to the given condition, 4 2 5
6  2 1 6  2 1
np + npq = 15 and (np)2 + (npq)2 = 117 = C4     + C5    
n 2 p 2 (1  q 2 ) 117  3  3  3  3
 = 6 0
(np  npq) 2 152  2 1
+ 6C6    
1  q2 117  3  3
 = 240 192 64
(1  q) 2 225 =  
729 729 729
2
 6q2  13q + 6 = 0  q = 496
3 =
729
2 1
 p=1 = 12. Mean = np and variance = npq
3 3
Since, np + npq = 15  np = 20 and npq = 16
1 2  20q = 16
 n  + n  = 15 4
3 9 q=
 n = 27 5
1 4 1
 mean = np = 27  = 9  p=1 =
3 5 5
Since, np = 20
1 1
10. P(getting head) = p =  n  = 20
2 5
1 1  n = 100
 q=1 =
2 2
r n r
1 1
Here, P(X = r) = nCrprqnr = nCr    
2 2
n
n 1
= Cr  
2
2

You might also like